97 research outputs found

    Transfer-free graphene-based differential pressure sensor

    No full text
    Graphene is an attractive material to be used for pressure sensors due to its thinness, electrical conductivity, and potential high gauge factor. One of the issues with processing graphene is the scalability, which is largely limited by the transfer process that is required for graphene deposited by chemical vapour deposition (CVD). In this work we employed a novel, transfer-free bulk-micromachining approach to realize graphene-based differential pressure sensors. The devices were successfully fabricated, and the samples were examined under Raman Spectroscopy, and electrically characterized. Further, pressure dependent measurements were performed for a dynamic range of 0 to 80 kPa of differential pressure and the corresponding change in resistance of the membrane was measured. The fabricated device has a sensitivity of 0.077 Ω/kPa and a gauge factor of 2.48.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material

    The influence of H<sub>2</sub> and NH<sub>3</sub> on catalyst nanoparticle formation and carbon nanotube growth

    No full text
    Control of the morphology of carbon nanotubes (CNT) is fundamental for many applications. It is known that the catalyst distributions influence the vertical alignment and the height of the CNT. In this work we investigate the influence of the pre-anneal time and reductant gases, specifically NH3 and H2 as well as combinations thereof, on the nanoparticle (NP) formation and CNT growth. The gases H2, NH3 show opposite roles during the dewetting of 1 nm Fe catalyst layer. The H2 favours uniform NP distributions (mean diameter of 15 nm) and the NH3 forms large clusters. Playing with double annealing steps H2- NH3 we obtained NP with larger mean diameters μ = 20 nm. We observed a mismatch between the diameters of the NP directly after annealing and the CNT after growth, due to a reshaping of the catalyst NP before the CNT nucleation. Furthermore, we found that longer annealing times decrease the CNT forest height and the H2 exposure during the annealing improves the height and the alignment of the CNT.Electronic Components, Technology and Material

    A Wafer-Scale Process for the Monolithic Integration of CVD Graphene and CMOS Logic for Smart MEMS/NEMS Sensors

    No full text
    In this paper we present, for the first time, the successful monolithic wafer-scale integration of CVD graphene with CMOS logic for highly miniaturized smart sensing structures with on-chip readout electronics. The use of a patterned CMOS compatible catalyst for pre-defined regions of CVD graphene growth, and the transfer-free process used, allows the direct implementation of patterned graphene structures between the front-end-of-line (FEOL) and back-end-of-line (BEOL) processes. No significant deterioration of the graphene properties and of the CMOS logic gate performance due to the high temperature graphene growth step was observed. This is a significant leap towards industrial production of graphene-based smart MEMS/NEMS sensors.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material

    Active feedback cooling of a SiN membrane resonator by electrostatic actuation

    No full text
    Feedback-based control techniques are useful tools in precision measurements as they allow us to actively shape the mechanical response of high quality factor oscillators used in force detection measurements. In this paper, we implement a feedback technique on a high-stress low-loss SiN membrane resonator, exploiting the charges trapped on the dielectric membrane. A properly delayed feedback force (dissipative feedback) enables the narrowing of the thermomechanical displacement variance in a similar manner to the cooling of the normal mechanical mode down to an effective temperature Teff. In the experiment reported here, we started from room temperature and gradually increasing the feedback gain, we were able to cool down the first normal mode of the resonator to a minimum temperature of about 124mK. This limit is imposed by our experimental setup and, in particular, by the injection of the read-out noise into the feedback. We discuss the implementation details and possible improvements to the technique.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and MaterialsEKL Equipmen

    Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    No full text
    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.EKL-UsersElectronic Components, Technology and MaterialsRST/Neutron and Positron Methods in Material

    Angle Sensitive Optical Sensor for Light Source Tracker Miniaturization

    No full text
    An angle sensitive optical sensor without conventional optics is presented in this article. The reported device omits the need for adding 3-D optics in postprocessing by monolithic integration of complimentary metal-oxide semiconductor compatible diffraction grating layers, which cuts down the fabrication costs and allows for miniaturization of these types of sensors. The sensor resolves angular information from a monochromatic light source over a single axis with a mean absolute accuracy of 0.6° in an investigated ±26\pm 26° field-of-view using four unique pixels. This letter facilitates miniaturization of light source trackers, such as sun position sensors on small satellites of the future.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material

    High-performance wafer-scale transfer-free graphene microphones

    No full text
    A repeatable method to fabricate multi-layer graphene (ML-gr) membranes of 2r = 85 - 155 μm (t &lt; 10 nm) with a 100% yield on 100 mm wafers is demonstrated. These membranes show higher sensitivity than a commercial MEMS-Mic combined with an area reduction of 10x. The process overcomes one of the main limitations when integrating graphene diaphragms in microphones due to the absence of automatic transfer methods on non-planarized target substrates. This method aims to overcome this limitation by combining a full-dry release of Chemical Vapor Deposition (CVD) graphene by Deep Reactive Ion Etching (DRIE) and vapor HF (VHF).Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and MaterialsQN/van der Zant LabDynamics of Micro and Nano SystemsQN/Steeneken La

    Sensitive Transfer-Free Wafer-Scale Graphene Microphones

    No full text
    During the past decades micro-electromechanical microphones have largely taken over the market for portable devices, being produced in volumes of billions yearly. Because performance of current devices is near the physical limits, further miniaturization and improvement of microphones for mobile devices poses a major challenge that requires breakthrough device concepts, geometries, and materials. Graphene is an attractive material for enabling these breakthroughs due to its flexibility, strength, nanometer thinness, and high electrical conductivity. Here, we demonstrate that transfer-free 7 nm thick multilayer graphene (MLGr) membranes with diameters ranging from 85-155 to 300 μm can be used to detect sound and show a mechanical compliance up to 92 nm Pa-1, thus outperforming commercially available MEMS microphones of 950 μm with compliances around 3 nm Pa-1. The feasibility of realizing larger membranes with diameters of 300 μm and even higher compliances is shown, although these have lower yields. We present a process for locally growing graphene on a silicon wafer and realizing suspended membranes of patterned graphene across through-silicon holes by bulk micromachining and sacrificial layer etching, such that no transfer is required. This transfer-free method results in a 100% yield for membranes with diameters up to 155 μm on 132 fabricated drums. The device-To-device variations in the mechanical compliance in the audible range (20-20000 Hz) are significantly smaller than those in transferred membranes. With this work, we demonstrate a transfer-free method for realizing wafer-scale multilayer graphene membranes that is compatible with high-volume manufacturing. Thus, limitations of transfer-based methods for graphene microphone fabrication such as polymer contamination, crack formation, wrinkling, folding, delamination, and low-Tension reproducibility are largely circumvented, setting a significant step on the route toward high-volume production of graphene microphones. Electronic Components, Technology and MaterialsQN/van der Zant LabDynamics of Micro and Nano SystemsQN/Steeneken La

    Manufacturing thin ionic polymer metal composite for sensing at the microscale

    No full text
    Ionic polymer metal composites (IPMCs) are a class of materials with a rising appeal in biological micro-electromechanical systems (bio-MEMS) due to their unique properties (low voltage output, bio-compatibility, affinity with ionic medium). While tailoring and improving actuation capabilities of IPMCs is a key motivator in almost all IPMC manufacturing reports, very little efforts have been dedicated to sensing using IPMC thinner than 100 µm. Most reports on IPMC manufacturing and utilization rely on 180 µm-thick Nafion with platinum electrodes, too stiff for bio-MEMS applications. The same fabrication process on thinner membranes does yield in very poor electrodes and performance, and needs to be studied to increase flexibility and sensitivity in the microscale range. This study demonstrates an electroless Pt deposition method for fabricating bio-MEMS-suitable 50 µm-thick IPMC samples. First, we perform a comparative study on the platinum distribution within the Nafion backbone as well as on the surface for the standard electroless deposition recipe for thin (50 µm) and thick (180 µm) Nafion. We report strong differences in platinum distribution for thick and thin IPMC that experienced the same manufacturing process. By varying chemical concentrations from the standard recipe we obtain convenient platinum distribution on thin Nafion, with platinum mainly localized in proximity of surface, as well as electrodes with lower sheet resistance. We could measure the flexural rigidity as 3.43 × 10 − 8 N·m2, 46 times lower than standard 180 µm-thick IPMC. The calculated sensitivity is 0.476 ± 0.02 mV mm−1 and the limit of detection for our sensor is 500 ± 20 µm. This procedure sets a milestone for manufacturing 50 µm-thick IPMC for transducers and sensors in bio-MEMS applications.Electronic Components, Technology and MaterialsMicro and Nano Engineerin
    • …
    corecore