6 research outputs found
Supporting Exploratory Search Tasks Through Alternative Representations of Information
Information seeking is a fundamental component of many of the complex tasks presented to us, and is often conducted through interactions with automated search systems such as Web search engines. Indeed, the ubiquity of Web search engines makes information so readily available that people now often turn to the Web for all manners of information seeking needs. Furthermore, as the range of online information seeking tasks grows, more complex and open-ended search activities have been identified. One type of complex search activities that is of increasing interest to researchers is exploratory search, where the goal involves "learning" or "investigating", rather than simply "looking-up".
Given the massive increase in information availability and the use of online search for tasks beyond simply looking-up, researchers have noted that it becomes increasingly challenging for users to effectively leverage the available online information for complex and open-ended search activities. One of the main limitations of the current document retrieval paradigm offered by modern search engines is that it provides a ranked list of documents as a response to the searcher’s query with no further support for locating and synthesizing relevant information. Therefore, the searcher is left to find and make sense of useful information in a massive information space that lacks any overview or conceptual organization.
This thesis explores the impact of alternative representations of search results on user behaviors and outcomes during exploratory search tasks. Our inquiry is inspired by the premise that exploratory search tasks require sensemaking, and that sensemaking involves constructing and interacting with representations of knowledge. As such, in order to provide the searchers with more support in performing exploratory activities, there is a need to move beyond the current document retrieval paradigm by extending the support for locating and externalizing semantic information from textual documents and by providing richer representations of the extracted information coupled with mechanisms for accessing and interacting with the information in ways that support exploration and sensemaking. This dissertation presents a series of discrete research endeavour to explore different aspects of providing information and presenting this information in ways that both extraction and assimilation of relevant information is supported.
We first address the problem of extracting information – that is more granular than documents – as a response to a user's query by developing a novel information extraction system to represent documents as a series of entity-relationship tuples. Next, through a series of designing and evaluating alternative representations of search results, we examine how this extracted information can be represented such that it extends the document-based search framework's support for exploratory search tasks. Finally, we assess the ecological validity of this research by exploring error-prone representations of search results and how they impact a searcher's ability to leverage our representations to perform exploratory search tasks.
Overall, this research contributes towards designing future search systems by providing insights into the efficacy of alternative representations of search results for supporting exploratory search activities, culminating in a novel hybrid representation called Hierarchical Knowledge Graphs (HKG). To this end we propose and develop a framework that enables a reliable investigation of the impact of different representations and how they are perceived and utilized by information seekers
Characterizing and Predicting Email Deferral Behavior
Email triage involves going through unhandled emails and deciding what to do
with them. This familiar process can become increasingly challenging as the
number of unhandled email grows. During a triage session, users commonly defer
handling emails that they cannot immediately deal with to later. These deferred
emails, are often related to tasks that are postponed until the user has more
time or the right information to deal with them. In this paper, through
qualitative interviews and a large-scale log analysis, we study when and what
enterprise email users tend to defer. We found that users are more likely to
defer emails when handling them involves replying, reading carefully, or
clicking on links and attachments. We also learned that the decision to defer
emails depends on many factors such as user's workload and the importance of
the sender. Our qualitative results suggested that deferring is very common,
and our quantitative log analysis confirms that 12% of triage sessions and 16%
of daily active users had at least one deferred email on weekdays. We also
discuss several deferral strategies such as marking emails as unread and
flagging that are reported by our interviewees, and illustrate how such
patterns can be also observed in user logs. Inspired by the characteristics of
deferred emails and contextual factors involved in deciding if an email should
be deferred, we train a classifier for predicting whether a recently triaged
email is actually deferred. Our experimental results suggests that deferral can
be classified with modest effectiveness. Overall, our work provides novel
insights about how users handle their emails and how deferral can be modeled