73 research outputs found
A Glucose Fuel Cell for Implantable Brain–Machine Interfaces
We have developed an implantable fuel cell that generates power through glucose oxidation, producing steady-state power and up to peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain–machine interfaces can thus potentially benefit from having their implanted units powered or recharged by glucose fuel cells
Neural Decision Boundaries for Maximal Information Transmission
We consider here how to separate multidimensional signals into two
categories, such that the binary decision transmits the maximum possible
information transmitted about those signals. Our motivation comes from the
nervous system, where neurons process multidimensional signals into a binary
sequence of responses (spikes). In a small noise limit, we derive a general
equation for the decision boundary that locally relates its curvature to the
probability distribution of inputs. We show that for Gaussian inputs the
optimal boundaries are planar, but for non-Gaussian inputs the curvature is
nonzero. As an example, we consider exponentially distributed inputs, which are
known to approximate a variety of signals from natural environment.Comment: 5 pages, 3 figure
A wirelessly powered and controlled device for optical neural control of freely-behaving animals
Optogenetics, the ability to use light to activate and silence specific neuron types within neural networks in vivo and in vitro, is revolutionizing neuroscientists' capacity to understand how defined neural circuit elements contribute to normal and pathological brain functions. Typically, awake behaving experiments are conducted by inserting an optical fiber into the brain, tethered to a remote laser, or by utilizing an implanted light-emitting diode (LED), tethered to a remote power source. A fully wireless system would enable chronic or longitudinal experiments where long duration tethering is impractical, and would also support high-throughput experimentation. However, the high power requirements of light sources (LEDs, lasers), especially in the context of the extended illumination periods often desired in experiments, precludes battery-powered approaches from being widely applicable. We have developed a headborne device weighing 2 g capable of wirelessly receiving power using a resonant RF power link and storing the energy in an adaptive supercapacitor circuit, which can algorithmically control one or more headborne LEDs via a microcontroller. The device can deliver approximately 2 W of power to the LEDs in steady state, and 4.3 W in bursts. We also present an optional radio transceiver module (1 g) which, when added to the base headborne device, enables real-time updating of light delivery protocols; dozens of devices can be controlled simultaneously from one computer. We demonstrate use of the technology to wirelessly drive cortical control of movement in mice. These devices may serve as prototypes for clinical ultra-precise neural prosthetics that use light as the modality of biological control.National Institutes of Health (U.S.) (NIH Director’s New Innovator Award (DP2OD002002))National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1RC1MH088182)National Institutes of Health (U.S.) (Grant 1RC2DE020919)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Institutes of Health (U.S.) (Grant 1R43NS070453)National Science Foundation (U.S.) (CAREER award)National Science Foundation (U.S.) (NSF Grant DMS 1042134)National Science Foundation (U.S.) (NSF Grant DMS 0848804)National Science Foundation (U.S.) (NSF Grant EFRI 0835878)Benesse FoundationGoogle (Firm)Dr. Gerald Burnett and Marjorie BurnettUnited States. Dept. of Defense (CDMRP PTSD Program)Massachusetts Institute of TechnologyBrain & Behavior Research FoundationAlfred P. Sloan FoundationSociety for NeuroscienceMassachusetts Institute of Technology. Media LaboratoryMcGovern Institute for Brain Research at MITWallace H. Coulter Foundatio
Consequences of converting graded to action potentials upon neural information coding and energy efficiency
Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation
The Wiring Economy Principle: Connectivity Determines Anatomy in the Human Brain
Minimization of the wiring cost of white matter fibers in the human brain appears to be an organizational principle. We investigate this aspect in the human brain using whole brain connectivity networks extracted from high resolution diffusion MRI data of 14 normal volunteers. We specifically address the question of whether brain anatomy determines its connectivity or vice versa. Unlike previous studies we use weighted networks, where connections between cortical nodes are real-valued rather than binary off-on connections. In one set of analyses we found that the connectivity structure of the brain has near optimal wiring cost compared to random networks with the same number of edges, degree distribution and edge weight distribution. A specifically designed minimization routine could not find cheaper wiring without significantly degrading network performance. In another set of analyses we kept the observed brain network topology and connectivity but allowed nodes to freely move on a 3D manifold topologically identical to the brain. An efficient minimization routine was written to find the lowest wiring cost configuration. We found that beginning from any random configuration, the nodes invariably arrange themselves in a configuration with a striking resemblance to the brain. This confirms the widely held but poorly tested claim that wiring economy is a driving principle of the brain. Intriguingly, our results also suggest that the brain mainly optimizes for the most desirable network connectivity, and the observed brain anatomy is merely a result of this optimization
Time Scale Hierarchies in the Functional Organization of Complex Behaviors
Traditional approaches to cognitive modelling generally portray cognitive events in terms of ‘discrete’ states (point attractor dynamics) rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional architectures. Our approach is grounded in the notion that arbitrary complex (human) behaviour is decomposable into functional modes (elementary units), which we conceptualize as low-dimensional dynamical objects (structured flows on manifolds). The ensemble of modes at an agent’s disposal constitutes his/her functional repertoire. The modes may be subjected to additional dynamics (termed operational signals), in particular, instantaneous inputs, and a mechanism that sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the contributions of functional modes and operational signals from the output, which appears to be possible only when examining the output phase flow (i.e., not from trajectories in phase space or time)
LC-MSsim – a simulation software for liquid chromatography mass spectrometry data
<p>Abstract</p> <p>Background</p> <p>Mass Spectrometry coupled to Liquid Chromatography (LC-MS) is commonly used to analyze the protein content of biological samples in large scale studies. The data resulting from an LC-MS experiment is huge, highly complex and noisy. Accordingly, it has sparked new developments in Bioinformatics, especially in the fields of algorithm development, statistics and software engineering. In a quantitative label-free mass spectrometry experiment, crucial steps are the detection of peptide features in the mass spectra and the alignment of samples by correcting for shifts in retention time. At the moment, it is difficult to compare the plethora of algorithms for these tasks. So far, curated benchmark data exists only for peptide identification algorithms but no data that represents a ground truth for the evaluation of feature detection, alignment and filtering algorithms.</p> <p>Results</p> <p>We present <it>LC-MSsim</it>, a simulation software for LC-ESI-MS experiments. It simulates ESI spectra on the MS level. It reads a list of proteins from a FASTA file and digests the protein mixture using a user-defined enzyme. The software creates an LC-MS data set using a predictor for the retention time of the peptides and a model for peak shapes and elution profiles of the mass spectral peaks. Our software also offers the possibility to add contaminants, to change the background noise level and includes a model for the detectability of peptides in mass spectra. After the simulation, <it>LC-MSsim </it>writes the simulated data to mzData, a public XML format. The software also stores the positions (monoisotopic m/z and retention time) and ion counts of the simulated ions in separate files.</p> <p>Conclusion</p> <p><it>LC-MSsim </it>generates simulated LC-MS data sets and incorporates models for peak shapes and contaminations. Algorithm developers can match the results of feature detection and alignment algorithms against the simulated ion lists and meaningful error rates can be computed. We anticipate that <it>LC-MSsim </it>will be useful to the wider community to perform benchmark studies and comparisons between computational tools.</p
Pathways to cellular supremacy in biocomputing
Synthetic biology uses living cells as the substrate for performing human-defined computations. Many current implementations of cellular computing are based on the “genetic circuit” metaphor, an approximation of the operation of silicon-based computers. Although this conceptual mapping has been relatively successful, we argue that it fundamentally limits the types of computation that may be engineered inside the cell, and fails to exploit the rich and diverse functionality available in natural living systems. We propose the notion of “cellular supremacy” to focus attention on domains in which biocomputing might offer superior performance over traditional computers. We consider potential pathways toward cellular supremacy, and suggest application areas in which it may be found.A.G.-M. was supported by the SynBio3D project of the UK Engineering and Physical Sciences Research Council (EP/R019002/1) and the European CSA on biological standardization BIOROBOOST (EU grant number 820699). T.E.G. was supported by a Royal Society University Research Fellowship (grant UF160357) and BrisSynBio, a BBSRC/ EPSRC Synthetic Biology Research Centre (grant BB/L01386X/1). P.Z. was supported by the EPSRC Portabolomics project (grant EP/N031962/1). P.C. was supported by SynBioChem, a BBSRC/EPSRC Centre for Synthetic Biology of Fine and Specialty Chemicals (grant BB/M017702/1) and the ShikiFactory100 project of the European Union’s Horizon 2020 research and innovation programme under grant agreement 814408
On Chemical Reaction Network Design by a Nested Evolution Algorithm
International audienceOne goal of synthetic biology is to implement useful functions with biochemical reactions, either by reprogramming living cells or programming artificial vesicles. In this perspective, we consider Chemical Reaction Networks (CRN) as a programming language, and investigate the CRN program synthesis problem. Recent work has shown that CRN interpreted by differential equations are Turing-complete and can be seen as analog computers where the molecular concentrations play the role of information carriers. Any real function that is computable by a Turing machine in arbitrary precision can thus be computed by a CRN over a finite set of molecular species. The proof of this result gives a numerical method to generate a finite CRN for implementing a real function presented as the solution of a Polynomial Initial Values Problem (PIVP). In this paper, we study an alternative method based on artificial evolution to build a CRN that approximates a real function given on finite sets of input values. We present a nested search algorithm that evolves the structure of the CRN and optimizes the kinetic parameters at each generation. We evaluate this algorithm on the Heaviside and Cosine functions both as functions of time and functions of input molecular species. We then compare the CRN obtained by artificial evolution both to the CRN generated by the numerical method from a PIVP definition of the function, and to the natural CRN found in the BioModels repository for switches and oscillators
- …