2 research outputs found

    The VISCACHA survey -- VIII. Chemical evolution history of Small Magellanic Cloud West Halo cluster

    Full text link
    The chemical evolution history of the Small Magellanic Cloud (SMC) has been a matter of debate for decades. The challenges in understanding the SMC chemical evolution are related to a very slow star formation rate (SFR) combined with bursts triggered by the multiple interactions between the SMC and the Large Magellanic Cloud, a significant (~0.5 dex) metallicity dispersion for the SMC cluster population younger than about 7.5 Gyr, and multiple chemical evolution models tracing very different paths through the observed age-metallicity relation of the SMC. There is no doubt that these processes were complex. Therefore, a step-by-step strategy is required in order to better understand the SMC chemical evolution. We adopted an existing framework to split the SMC into regions on the sky, and we focus on the west halo in this work, which contains the oldest and most metal-poor stellar populations and is moving away from the SMC, that is, in an opposite motion with respect to the Magellanic Bridge. We present a sample containing ~60% of all west halo clusters to represent the region well, and we identify a clear age-metallicity relation with a tight dispersion that exhibits a 0.5 dex metallicity dip about 6 Gyr ago. We ran chemical evolution models and discuss possible scenarios to explain this metallicity dip, the most likely being a major merger accelerating the SFR after the event. This merger should be combined with inefficient internal gas mixing within the SMC and different SFRs in different SMC regions because the same metallicity dip is not seen in the AMR of the SMC combining clusters from all regions. We try to explain the scenario to better understand the SMC chemo-dynamical history.Comment: 16 pages, 8 figures, 3 tables, Accepted for publication in Astronomy & Astrophysics journal

    Shape of the outer stellar warp in the Large Magellanic Cloud disk

    No full text
    Warps are vertical distortions of the stellar or gaseous disks of galaxies. One of the proposed scenarios for the formation of warps involves tidal interactions among galaxies. A recent study identified a stellar warp in the outer regions of the south-western (SW) disk of the Large Magellanic Cloud (LMC) and suggested that it might have originated due to the tidal interaction between the LMC and the Small Magellanic Cloud (SMC). Due to the limited spatial coverage of the data, the authors could not investigate the counterpart of this warp in the north-eastern (NE) region, which is essential to understanding the global shape, nature, and origin of the outer LMC warp. In this work, we study the structure of the LMC disk using data on red clump stars from the Gaia Early Data Release 3 (EDR3), which cover the entire Magellanic system. We detected a warp in the NE outer LMC disk which is deviated from the disk plane in the same direction as that of the SW outer warp, but with a lower amplitude. This suggests that the outer LMC disk has an asymmetric stellar warp, which is likely to be a U-shaped warp. Our result provides an observational constraint to the theoretical models of the Magellanic system aimed at improving the understanding the LMC-SMC interaction history
    corecore