5 research outputs found
Expression and Functional Studies on the Noncoding RNA, PRINS.
PRINS, a noncoding RNA identified earlier by our research group, contributes to psoriasis susceptibility and cellular stress response. We have now studied the cellular and histological distribution of PRINS by using in situ hybridization and demonstrated variable expressions in different human tissues and a consistent staining pattern in epidermal keratinocytes and in vitro cultured keratinocytes. To identify the cellular function(s) of PRINS, we searched for a direct interacting partner(s) of this stress-induced molecule. In HaCaT and NHEK cell lysates, the protein proved to be nucleophosmin (NPM) protein as a potential physical interactor with PRINS. Immunohistochemical experiments revealed an elevated expression of NPM in the dividing cells of the basal layers of psoriatic involved skin samples as compared with healthy and psoriatic uninvolved samples. Others have previously shown that NPM is a ubiquitously expressed nucleolar phosphoprotein which shuttles to the nucleoplasm after UV-B irradiation in fibroblasts and cancer cells. We detected a similar translocation of NPM in UV-B-irradiated cultured keratinocytes. The gene-specific silencing of PRINS resulted in the retention of NPM in the nucleolus of UV-B-irradiated keratinocytes; suggesting that PRINS may play a role in the NPM-mediated cellular stress response in the skin
In Vitro Dedifferentiation of Melanocytes from Adult Epidermis
In previous work we described a novel culture technique using a cholera toxin and PMA-free medium (Mel-mix) for obtaining pure melanocyte cultures from human adult epidermis. In Mel-mix medium the cultured melanocytes are bipolar, unpigmented and highly proliferative. Further characterization of the cultured melanocytes revealed the disappearance of c-Kit and TRP-1 and induction of nestin expression, indicating that melanocytes dedifferentiated in this in vitro culture. Cholera toxin and PMA were able to induce c-Kit and TRP-1 protein expressions in the cells, reversing dedifferentiation. TRP-1 mRNA expression was induced in dedifferentiated melanocytes by UV-B irradiated keratinocyte supernatants, however direct UV-B irradiation of the cells resulted in further decrease of TRP-1 mRNA expression. These dedifferentiated, easily accessible cultured melanocytes provide a good model for studying melanocyte differentiation and possibly transdifferentiation. Because melanocytes in Mel-mix medium can be cultured with human serum as the only supplement, this culture system is also suitable for autologous cell transplantation