3 research outputs found
Observer variability in the assessment of CT coronary angiography and coronary artery calcium score:substudy of the Scottish COmputed Tomography of the HEART (SCOT-HEART) trial
Introduction Observer variability can influence the assessment of CT coronary angiography (CTCA) and the subsequent diagnosis of angina pectoris due to coronary heart disease. Methods We assessed 210 CTCAs from the Scottish COmputed Tomography of the HEART (SCOT-HEART) trial for intraobserver and interobserver variability. Calcium score, coronary angiography and image quality were evaluated. Coronary artery disease was defined as none (70%) luminal stenosis and classified as no (70%) coronary artery disease. Post-CTCA diagnosis of angina pectoris due to coronary heart disease was classified as yes, probable, unlikely or no. Results Patients had a mean body mass index of 29 (28, 30) kg/m2, heart rate of 58 (57, 60)/min and 62% were men. Intraobserver and interobserver agreements for the presence or absence of coronary artery disease were excellent (95% agreement, κ 0.884 (0.817 to 0.951) and good (91%, 0.791 (0.703 to 0.879)). Intraobserver and interobserver agreement for the presence or absence of angina pectoris due to coronary heart disease were excellent (93%, 0.842 (0.918 to 0.755) and good (86%, 0.701 (0.799 to 0.603)), respectively. Observer variability of calcium score was excellent for calcium scores below 1000. More segments were categorised as uninterpretable with 64-multidetector compared to 320-multidetector CTCA (10.1% vs 2.6%, p<0.001) but there was no difference in observer variability. Conclusions Multicentre multidetector CTCA has excellent agreement in patients under investigation for suspected angina due to coronary heart disease. Trial registration number NCT01149590
Computed tomography myocardial perfusion vs (15)O-water positron emission tomography and fractional flow reserve
Objectives: Computed tomography (CT) can perform comprehensive cardiac imaging. We compared CT coronary angiography (CTCA) and CT myocardial perfusion (CTP) with ¹⁵O-water positron emission tomography (PET) and invasive coronary angiography (ICA) with fractional flow reserve (FFR). Methods: 51 patients (63 (61–65) years, 80 % male) with known/suspected coronary artery disease (CAD) underwent 320-multidetector CTCA followed by “snapshot” adenosine stress CTP. Of these 22 underwent PET and 47 ICA/FFR. Obstructive CAD was defined as CTCA stenosis >50 % and CTP hypoperfusion, ICA stenosis >70 % or FFR <0.80. Results: PET hyperaemic myocardial blood flow (MBF) was lower in obstructive than non-obstructive territories defined by ICA/FFR (1.76 (1.32–2.20) vs 3.11 (2.44–3.79) mL/(g/min), P < 0.001) and CTCA/CTP (1.76 (1.32–2.20) vs 3.12 (2.44–3.79) mL/(g/min), P < 0.001). Baseline and hyperaemic CT attenuation density was lower in obstructive than non-obstructive territories (73 (71–76) vs 86 (84–88) HU, P < 0.001 and 101 (96–106) vs 111 (107–114) HU, P 0.001). PET hyperaemic MBF corrected for rate pressure product correlated with CT attenuation density (r = 0.579, P < 0.001). There was excellent per-patient sensitivity (96 %), specificity (85 %), negative predictive value (90 %) and positive predictive value (94 %) for CTCA/CTP vs ICA/FFR. Conclusion: CT myocardial attenuation density correlates with ¹⁵O-water PET MBF. CTCA and CTP can accurately identify obstructive CAD. Key Points: •CT myocardial perfusion can aid the assessment of suspected coronary artery disease. • CT attenuation density from “snapshot” imaging is a marker of myocardial perfusion. • CT myocardial attenuation density correlates with ¹⁵O-water PET myocardial blood flow. • CT attenuation density is lower in obstructive territories defined by invasive angiography. • Diagnostic accuracy of CTCA+CTP is comparable to invasive angiography + fractional flow reserve