53 research outputs found

    Hepatobiliary Disorders in Celiac Disease: An Update

    Get PDF
    This communication reviews recent literature and summarizes hepatobiliary abnormalities that may complicate the clinical course of celiac disease. A wide spectrum of hepatobiliary diseases has been described, including asymptomatic elevations of liver enzyme levels, nonspecific hepatitis, nonalcoholic fatty liver disease, and autoimmune and cholestatic liver disease. Moreover, in the majority of patients, liver enzyme levels will normalize on a gluten-free diet. In addition, celiac disease may be associated with rare hepatic complications, such as hepatic T-cell lymphoma. Because many celiac patients do not have overt gastrointestinal symptoms, a high index of suspicion is required. Simple methods of detecting celiac disease such as serum antibody tests help in the early identification of the disease, thus preventing serious complications of the disorder. The IgG DGP antibody test and IgA tTG antibody test used in combination are an excellent screening test for suspected cases of celiac disease

    Variations in host genes encoding adhesion molecules and susceptibility to falciparum malaria in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Host adhesion molecules play a significant role in the pathogenesis of <it>Plasmodium falciparum </it>malaria and changes in their structure or levels in individuals can influence the outcome of infection. The aim of this study was to investigate the association of SNPs of three adhesion molecule genes, <it>ICAM1</it>, <it>PECAM1 </it>and <it>CD36</it>, with severity of falciparum malaria in a malaria-endemic and a non-endemic region of India.</p> <p>Methods</p> <p>The frequency distribution of seven selected SNPs of <it>ICAM1</it>, <it>PECAM1 </it>and <it>CD36 </it>was determined in 552 individuals drawn from 24 populations across India. SNP-disease association was analysed in a case-control study format. Genotyping of the population panel was performed by Sequenom mass spectroscopy and patient/control samples were genotyped by SNaPshot method. Haplotypes and linkage disequilibrium (LD) plots were generated using PHASE and Haploview, respectively. Odds-ratio (OR) for risk assessment was estimated using EpiInfo™ version 3.4.</p> <p>Results</p> <p>Association of the ICAM1 rs5498 (exon 6) G allele and the CD36 exon 1a A allele with increased risk of severe malaria was observed (severe versus control, OR = 1.91 and 2.66, P = 0.02 and 0.0012, respectively). The CD36 rs1334512 (-53) T allele as well as the TT genotype associated with protection from severe disease (severe versus control, TT versus GG, OR = 0.37, P = 0.004). Interestingly, a SNP of the <it>PECAM1 </it>gene (rs668, exon 3, C/G) with low minor allele frequency in populations of the endemic region compared to the non-endemic region exhibited differential association with disease in these regions; the G allele was a risk factor for malaria in the endemic region, but exhibited significant association with protection from disease in the non-endemic region.</p> <p>Conclusion</p> <p>The data highlights the significance of variations in the <it>ICAM1</it>, <it>PECAM1 </it>and <it>CD36 </it>genes in the manifestation of falciparum malaria in India. The <it>PECAM1 </it>exon 3 SNP exhibits altered association with disease in the endemic and non-endemic region.</p

    Polymorphisms of TNF-enhancer and gene for FcγRIIa correlate with the severity of falciparum malaria in the ethnically diverse Indian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Susceptibility/resistance to <it>Plasmodium falciparum </it>malaria has been correlated with polymorphisms in more than 30 human genes with most association analyses having been carried out on patients from Africa and south-east Asia. The aim of this study was to examine the possible contribution of genetic variants in the <it>TNF </it>and <it>FCGR2A </it>genes in determining severity/resistance to <it>P. falciparum </it>malaria in Indian subjects.</p> <p>Methods</p> <p>Allelic frequency distribution in populations across India was first determined by typing genetic variants of the <it>TNF </it>enhancer and the <it>FCGR2A </it>G/A SNP in 1871 individuals from 55 populations. Genotyping was carried out by DNA sequencing, single base extension (SNaPshot), and DNA mass array (Sequenom). Plasma TNF was determined by ELISA. Comparison of datasets was carried out by Kruskal-Wallis and Mann-Whitney tests. Haplotypes and LD plots were generated by PHASE and Haploview, respectively. Odds ratio (OR) for risk assessment was calculated using EpiInfo™ version 3.4.</p> <p>Results</p> <p>A novel single nucleotide polymorphism (SNP) at position -76 was identified in the <it>TNF </it>enhancer along with other reported variants. Five <it>TNF </it>enhancer SNPs and the <it>FCGR2A </it>R131H (G/A) SNP were analyzed for association with severity of <it>P. falciparum </it>malaria in a malaria-endemic and a non-endemic region of India in a case-control study with ethnically-matched controls enrolled from both regions. <it>TNF </it>-1031C and -863A alleles as well as homozygotes for the TNF enhancer haplotype CACGG (-1031T>C, -863C>A, -857C>T, -308G>A, -238G>A) correlated with enhanced plasma TNF levels in both patients and controls. Significantly higher TNF levels were observed in patients with severe malaria. Minor alleles of -1031 and -863 SNPs were associated with increased susceptibility to severe malaria. The high-affinity IgG2 binding FcγRIIa AA (131H) genotype was significantly associated with protection from disease manifestation, with stronger association observed in the malaria non-endemic region. These results represent the first genetic analysis of the two immune regulatory molecules in the context of <it>P. falciparum </it>severity/resistance in the Indian population.</p> <p>Conclusion</p> <p>Association of specific <it>TNF </it>and <it>FCGR2A </it>SNPs with cytokine levels and disease severity/resistance was indicated in patients from areas with differential disease endemicity. The data emphasizes the need for addressing the contribution of human genetic factors in malaria in the context of disease epidemiology and population genetic substructure within India.</p

    Endoscopic management of Zenker’s diverticulum

    No full text
    Zenker’s diverticulum (ZD) is a posterior hypopharyngeal mucosal and submucosal outpouching through an area of relative muscular weakness, known as Killian’s triangle. It is an uncommon but highly treatable cause of mechanical dysphagia in elderly patients. Diagnosis is established by esophagography and upper endoscopy. The treatment has evolved with the advancement in the understanding of underlying pathophysiology. Traditionally, the management had been open surgical exposure and cricopharyngeal myotomy, combined with diverticular excision, suspension or inversion. Peroral endoscopic techniques (rigid and flexible) have gained popularity as minimally invasive and effective therapeutic options, with lesser mortality and morbidity. Flexible endoscopic myotomy offers additional benefits over rigid endoscopic techniques, as it does not require general anesthesia and neck hyperextension. The initial results of flexible endoscopy are quite encouraging, but long-term data are not yet available. For the optimal outcome, flexible endotherapy requires a formidable endoscopic skill, sound knowledge of the neck anatomy and meticulous understanding of the electrosurgical principles. In this article, we have comprehensively reviewed the current understanding of the pathophysiology involved and various techniques used in the management of ZD, with a focus on flexible endoscopic techniques

    Molecular applications of coupled-cluster-based linear response theory: inner and outer valence ionization potentials of nitrogen and water

    No full text
    We report the first ab initio molecular applications of our recently formulated linear response theory in the coupled-cluster framework for calculating inner and outer valence ionization potentials (IPs). The response model utilizes the coupled-cluster representation for the ground state &#936;gr and calculates the linear response of &#936;gr as it is subjected to the coupling of a photon field of frequency &#969; which destroys an electron. The poles of the response function provide the IPs. Applications to H2O and N2 show encouraging results

    A rare association of Sarcina with gastric adenocarcinoma diagnosed on fine-needle aspiration

    No full text
    Sarcina is a Gram-positive anaerobic organism, having exclusively fermentative metabolism and has been associated with gastric outlet obstruction. We demonstrate the present case to highlight the presence of Sarcina with a coexisting gastric adenocarcinoma diagnosed on fine needle aspiration cytology
    corecore