5,534 research outputs found

    Transport properties of diluted magnetic semiconductors: Dynamical mean field theory and Boltzmann theory

    Full text link
    The transport properties of diluted magnetic semiconductors (DMS) are calculated using dynamical mean field theory (DMFT) and Boltzmann transport theory. Within DMFT we study the density of states and the dc-resistivity, which are strongly parameter dependent such as temperature, doping, density of the carriers, and the strength of the carrier-local impurity spin exchange coupling. Characteristic qualitative features are found distinguishing weak, intermediate, and strong carrier-spin coupling and allowing quantitative determination of important parameters defining the underlying ferromagnetic mechanism. We find that spin-disorder scattering, formation of bound state, and the population of the minority spin band are all operational in DMFT in different parameter range. We also develop a complementary Boltzmann transport theory for scattering by screened ionized impurities. The difference in the screening properties between paramagnetic (T>TcT>T_c) and ferromagnetic (T<TcT<T_c) states gives rise to the temperature dependence (increase or decrease) of resistivity, depending on the carrier density, as the system goes from the paramagnetic phase to the ferromagnetic phase. The metallic behavior below TcT_c for optimally doped DMS samples can be explained in the Boltzmann theory by temperature dependent screening and thermal change of carrier spin polarization.Comment: 15 pages, 15 figure

    Schwoebel barriers on Si(111) steps and kinks

    Full text link
    Motivated by our previous work using the Stillinger-Weber potential, which shows that the [2‾11\overline{2}11] step on 1×\times1 reconstructed Si(111) has a Schwoebel barrier of 0.61±\pm0.07 eV, we calculate here the same barrier corresponding to two types of kinks on this step - one with rebonding between upper and lower terrace atoms (type B) and the other without (type A). From the binding energy of an adatom, without additional relaxation of other atoms, we find that the Schwoebel barrier must be less than 0.39 eV (0.62 eV) for the kink of type A (type B). From the true adatom binding energy we determine the Schwoebel barrier to be 0.15±\pm0.07eV (0.50±\pm0.07 eV). The reduction of the Schwoebel barrier due to the presence of rebonding along the step edge or kink site is argued to be a robust feature. However, as the true binding energy plots show discontinuities due to significant movement of atoms at the kink site, we speculate on the possibility of multi-atom processes having smaller Schwoebel barriers.Comment: Manuscript in revtex twocolumn format (7pgs - which includes 14 postscript files). Submitted to the The Journal of Vacuum Science and Technology (Proceedings of the Physics and Chemistry of Semi- conductor Interfaces - 23 (1996)

    Ab-initio study of disorder effects on the electronic and magnetic structures of Sr2_2FeMoO6_6

    Full text link
    We have investigated the electronic structure of ordered and disordered Sr2_2FeMoO6_6 using {\it ab-initio} band structure methods. The effect of disorder was simulated within super-cell calculations to realize several configurations with mis-site disorders. It is found that such disorder effects destroy the half-metallic ferro-magnetic state of the ordered compound. It also leads to a substantial reduction of the magnetic moments at the Fe sites in the disordered configurations. Most interestingly, it is found for the disordered configurations, that the magnetic coupling within the Fe sub-lattice as well as that within the Mo sub-lattice always remain ferro-magnetic, while the two sub-lattices couple anti-ferromagnetically, in close analogy to the magnetic structure of the ordered compound, but in contrast to recent suggestions.Comment: 7 pages, 3 figure
    • …
    corecore