4,198 research outputs found

    Space-Time Tradeoffs for Distributed Verification

    Full text link
    Verifying that a network configuration satisfies a given boolean predicate is a fundamental problem in distributed computing. Many variations of this problem have been studied, for example, in the context of proof labeling schemes (PLS), locally checkable proofs (LCP), and non-deterministic local decision (NLD). In all of these contexts, verification time is assumed to be constant. Korman, Kutten and Masuzawa [PODC 2011] presented a proof-labeling scheme for MST, with poly-logarithmic verification time, and logarithmic memory at each vertex. In this paper we introduce the notion of a tt-PLS, which allows the verification procedure to run for super-constant time. Our work analyzes the tradeoffs of tt-PLS between time, label size, message length, and computation space. We construct a universal tt-PLS and prove that it uses the same amount of total communication as a known one-round universal PLS, and tt factor smaller labels. In addition, we provide a general technique to prove lower bounds for space-time tradeoffs of tt-PLS. We use this technique to show an optimal tradeoff for testing that a network is acyclic (cycle free). Our optimal tt-PLS for acyclicity uses label size and computation space O((logn)/t)O((\log n)/t). We further describe a recursive O(logn)O(\log^* n) space verifier for acyclicity which does not assume previous knowledge of the run-time tt.Comment: Pre-proceedings version of paper presented at the 24th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2017

    Scattering Mechanism in Modulation-Doped Shallow Two-Dimensional Electron Gases

    Full text link
    We report on a systematic investigation of the dominant scattering mechanism in shallow two-dimensional electron gases (2DEGs) formed in modulation-doped GaAs/Al_{x}Ga_{1-x}As heterostructures. The power-law exponent of the electron mobility versus density, mu \propto n^{alpha}, is extracted as a function of the 2DEG's depth. When shallower than 130 nm from the surface, the power-law exponent of the 2DEG, as well as the mobility, drops from alpha \simeq 1.65 (130 nm deep) to alpha \simeq 1.3 (60 nm deep). Our results for shallow 2DEGs are consistent with theoretical expectations for scattering by remote dopants, in contrast to the mobility-limiting background charged impurities of deeper heterostructures.Comment: 4 pages, 3 figures, modified version as accepted in AP

    The Intrinsic Spin Hall Conductivity in a Generalized Rashba Model

    Full text link
    We calculate the intrinsic spin Hall conductivity \sigma^{\mathrm{sH}} of a two-dimensional electron system within a generalized Rashba model, showing that it is, in general, finite and model-dependent. Considering arbitrary band dispersion, we find that \sigma^{\mathrm{sH}} in the presence of the linear-in-momentum spin-orbit coupling of the Rashba form does not vanish in the presence of impurities except for the precisely parabolic spectrum. We show, using the linear response Kubo formalism, how the exact cancellation happens for the quadratic dispersion, and why it does not occur in general. We derive a simple quasiclassical formula for \sigma^{\mathrm{sH}} in terms of the Fermi momenta for the two electron chiralities, and find that \sigma^{\mathrm{sH}} is in general of the order of the squared strength of the Rashba term

    Spin Bose Glass Phase in Bilayer Quantum Hall Systems at ν=2\nu=2

    Full text link
    We develop an effective spin theory to describe magnetic properties of the ν=2\nu=2 Quantum Hall bilayer systems. In the absence of disorder this theory gives quantitative agreement with the results of microscopic Hartree-Fock calculations, and for finite disorder it predicts the existence of a novel spin Bose glass phase. The Bose glass is characterized by the presence of domains of canted antiferromagnetic phase with zero average antiferromagnetic order and short range mean antiferromagnetic correlations. It has infinite antiferromagnetic transverse susceptibility, finite longitudinal spin susceptibility and specific heat linear in temperature. Transition from the canted antiferromagnet phase to the spin Bose glass phase is characterized by a universal value of the longitudinal spin conductance.Comment: 4 pages, 4 eps figure

    Carrier relaxation due to electron-electron interaction in coupled double quantum well structures

    Full text link
    We calculate the electron-electron interaction induced energy-dependent inelastic carrier relaxation rate in doped semiconductor coupled double quantum well nanostructures within the two subband approximation at zero temperature. In particular, we calculate, using many-body theory, the imaginary part of the full self-energy matrix by expanding in the dynamically RPA screened Coulomb interaction, obtaining the intrasubband and intersubband electron relaxation rates in the ground and excited subbands as a function of electron energy. We separate out the single particle and the collective excitation contributions, and comment on the effects of structural asymmetry in the quantum well on the relaxation rate. Effects of dynamical screening and Fermi statistics are automatically included in our many body formalism rather than being incorporated in an ad-hoc manner as one must do in the Boltzman theory.Comment: 26 pages, 5 figure

    An extended Hubbard model with ring exchange: a route to a non-Abelian topological phase

    Full text link
    We propose an extended Hubbard model on a 2D Kagome lattice with an additional ring-exchange term. The particles can be either bosons or spinless fermions . At a special filling fraction of 1/6 the model is analyzed in the lowest non-vanishing order of perturbation theory. Such ``undoped'' model is closely related to the Quantum Dimer Model. We show how to arrive at an exactly soluble point whose ground state manifold is the extensively degenerate ``d-isotopy space'', a necessary precondition for for a certain type of non-Abelian topological order. Near the ``special'' values, d=2cosπ/(k+2)d = 2 \cos \pi/(k+2), this space is expected to collapse to a stable topological phase with anyonic excitations closely related to SU(2) Chern-Simons theory at level k.Comment: 4 pages, 2 colour figures, submitted to PRL. For an extended treatment of a more general family of models see cond-mat/030912

    Pressure-tuning of the electron-phonon coupling: the insulator to metal transition in manganites

    Get PDF
    A comprehensive understanding of the physical origin of the unique magnetic and transport properties of A_(1-x)A'^xMnO_3 manganites (A = trivalent rare-earth and A' = divalent alkali-earth metal) is still far from being achieved. The complexity of these systems arises from the interplay among several competing interactions of comparable strength. Recently the electron-phonon coupling, triggered by a Jahn-Teller distortion of the MnO_6 octahedra, has been recognised to play an essential role in the insulator to metal transition and in the closely related colossal magneto-resistance. The pressure tuning of the octahedral distortion gives a unique possibility to separate the basic interactions and, at least in principle, to follow the progressive transformation of a manganite from an intermediate towards a weak electron-phonon coupling regime. Using a diamond anvil cell, temperature and pressure-dependent infrared absorption spectra of La_(0.75)Ca_(0.25)MnO_3 have been collected and, from the spectral weight analysis, the pressure dependence of the insulator to metal transition temperature T_IM has been determined for the first time up to 11.2 GPa. The T_IM(P) curve we proposed to model the present data revealed a universality character in accounting for the whole class of intermediate coupling compounds. This property can be exploited to distinguish the intermediate from the weak coupling compounds pointing out the fundamental differences between the two coupling regimes.Comment: 8 pages, 4 figure

    Estimates of electronic interaction parameters for LaMMO3_3 compounds (MM=Ti-Ni) from ab-initio approaches

    Full text link
    We have analyzed the ab-initio local density approximation band structure calculations for the family of perovskite oxides, LaMMO3_3 with MM=Ti-Ni within a parametrized nearest neighbor tight-binding model and extracted various interaction strengths. We study the systematics in these interaction parameters across the transition metal series and discuss the relevance of these in a many-body description of these oxides. The results obtained here compare well with estimates of these parameters obtained via analysis of electron spectroscopic results in conjunction with the Anderson impurity model. The dependence of the hopping interaction strength, t, is found to be approximately r3r^{-3}.Comment: 18 pages; 1 tex file+9 postscript files (appeared in Phys Rev B Oct 15,1996
    corecore