46 research outputs found

    Theory of nuclear induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots

    Full text link
    We propose a model for spectral diffusion of localized spins in semiconductors due to the dipolar fluctuations of lattice nuclear spins. Each nuclear spin flip-flop is assumed to be independent, the rate for this process being calculated by a method of moments. Our calculated spin decoherence time TM=0.64T_{M}=0.64 ms for donor electron spins in Si:P is a factor of two longer than spin echo decay measurements. For 31^{31}P nuclear spins we show that spectral diffusion is well into the motional narrowing regime. The calculation for GaAs quantum dots gives TM=10−50T_{M}=10-50 μ\mus depending on the quantum dot size. Our theory indicates that nuclear induced spectral diffusion should not be a serious problem in developing spin-based semiconductor quantum computer architectures.Comment: 15 pages, 9 figures. Accepted for publication in Phys. Rev.

    The Effects of Disorder on the ν=1\nu=1 Quantum Hall State

    Full text link
    A disorder-averaged Hartree-Fock treatment is used to compute the density of single particle states for quantum Hall systems at filling factor ν=1\nu=1. It is found that transport and spin polarization experiments can be simultaneously explained by a model of mostly short-range effective disorder. The slope of the transport gap (due to quasiparticles) in parallel field emerges as a result of the interplay between disorder-induced broadening and exchange, and has implications for skyrmion localization.Comment: 4 pages, 3 eps figure

    Electron spin coherence in semiconductors: Considerations for a spin-based solid state quantum computer architecture

    Full text link
    We theoretically consider coherence times for spins in two quantum computer architectures, where the qubit is the spin of an electron bound to a P donor impurity in Si or within a GaAs quantum dot. We show that low temperature decoherence is dominated by spin-spin interactions, through spectral diffusion and dipolar flip-flop mechanisms. These contributions lead to 1-100 μ\mus calculated spin coherence times for a wide range of parameters, much higher than former estimates based on T2∗T_{2}^{*} measurements.Comment: Role of the dipolar interaction clarified; Included discussion on the approximations employed in the spectral diffusion calculation. Final version to appear in Phys. Rev.

    Numerical study of the thermoelectric power factor in ultra-thin Si nanowires

    Full text link
    Low dimensional structures have demonstrated improved thermoelectric (TE) performance because of a drastic reduction in their thermal conductivity, {\kappa}l. This has been observed for a variety of materials, even for traditionally poor thermoelectrics such as silicon. Other than the reduction in {\kappa}l, further improvements in the TE figure of merit ZT could potentially originate from the thermoelectric power factor. In this work, we couple the ballistic (Landauer) and diffusive linearized Boltzmann electron transport theory to the atomistic sp3d5s*-spin-orbit-coupled tight-binding (TB) electronic structure model. We calculate the room temperature electrical conductivity, Seebeck coefficient, and power factor of narrow 1D Si nanowires (NWs). We describe the numerical formulation of coupling TB to those transport formalisms, the approximations involved, and explain the differences in the conclusions obtained from each model. We investigate the effects of cross section size, transport orientation and confinement orientation, and the influence of the different scattering mechanisms. We show that such methodology can provide robust results for structures including thousands of atoms in the simulation domain and extending to length scales beyond 10nm, and point towards insightful design directions using the length scale and geometry as a design degree of freedom. We find that the effect of low dimensionality on the thermoelectric power factor of Si NWs can be observed at diameters below ~7nm, and that quantum confinement and different transport orientations offer the possibility for power factor optimization.Comment: 42 pages, 14 figures; Journal of Computational Electronics, 201

    Competing orders in a magnetic field: spin and charge order in the cuprate superconductors

    Full text link
    We describe two-dimensional quantum spin fluctuations in a superconducting Abrikosov flux lattice induced by a magnetic field applied to a doped Mott insulator. Complete numerical solutions of a self-consistent large N theory provide detailed information on the phase diagram and on the spatial structure of the dynamic spin spectrum. Our results apply to phases with and without long-range spin density wave order and to the magnetic quantum critical point separating these phases. We discuss the relationship of our results to a number of recent neutron scattering measurements on the cuprate superconductors in the presence of an applied field. We compute the pinning of static charge order by the vortex cores in the `spin gap' phase where the spin order remains dynamically fluctuating, and argue that these results apply to recent scanning tunnelling microscopy (STM) measurements. We show that with a single typical set of values for the coupling constants, our model describes the field dependence of the elastic neutron scattering intensities, the absence of satellite Bragg peaks associated with the vortex lattice in existing neutron scattering observations, and the spatial extent of charge order in STM observations. We mention implications of our theory for NMR experiments. We also present a theoretical discussion of more exotic states that can be built out of the spin and charge order parameters, including spin nematics and phases with `exciton fractionalization'.Comment: 36 pages, 33 figures; for a popular introduction, see http://onsager.physics.yale.edu/superflow.html; (v2) Added reference to new work of Chen and Ting; (v3) reorganized presentation for improved clarity, and added new appendix on microscopic origin; (v4) final published version with minor change

    Environmentally Friendly Machining

    No full text
    XX, 100p. 39 illus.online resource

    Seroprevalence of Hepatitis A virus infection in non-human primates in Assam, India

    No full text
    The present study investigated 37 serum samples of non-human primates in Assam State Zoo and the Department of Forest and Environment, Govt. of Assam for seroprevalence of hepatitis A virus infection during the period from December, 2007 to November, 2009. Four serum samples were also collected from animal keepers of the zoo to investigate transmission of the disease to the attendants working with these primates. Competitive ELISA was performed using hepatitis A virus ELISA kit (Wanti Hep. AV) to detect hepatitis A virus antibody in serum samples. Ten (27.21%) of the non-human primate samples and three (75%) human samples had detectable anti-hepatitis A virus antibodies. Living status of the non-human primates (Free living) was a high potential risk for hepatitis A virus infection. Seroprevalence of hepatitis A virus infection had significant difference between free living non-human primates and captive non-human primates (P less than 0.05). No significant difference (p=0.86) was seen between male and female non-human primate

    Not Available

    No full text
    Thermal characterization of pig hair fibreHair fiber is a key by-product of humane slaughter of pigs with considerable economic value. In the present study, we investigated the thermal properties of pig hair fiber using Differential Scanning Calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC curve showed a broad endotherm (around 50–80°C) initially, followed by denaturation doublet peaks (229°C and 239°C) and finally a pyrolysis endotherm. The melting enthalpy of pig hair fiber was 9.93 J/g on dry basis. During TGA, distinct phases of initial weight loss due to loss of moisture and later through thermal degradation of protein around 238–240°C were observed. Mean thermal insulation and conductivity values of pig hair fiber were 0.068 ± 0.004 m2K/W and 0.029 ± 0.003 W/m/K, respectively. The thermal characteristics of pig hair fiber were similar to other keratin fibers of animal origin.Not Availabl

    Not Available

    No full text
    Not AvailableGhungroo is the first registered pig breed of indigenous origin in India. The work was designed to develop a reference dissection method for carcasses by establishing bi-lateral symmetry and to determine whether or not differences exist between right and left sides of pig carcasses for some precisely measured physical and chemical traits. Carcass evaluation procedures could be simplified if selected measurements from one side accurately reflect the composition or meat quality of the entire carcass. Forty pigs of Ghungroo breed were selected to represent equally two sexes and two market weight groups. The pigs were slaughtered and after the carcasses were chilled they were carefully split into left and right sides. Least correlation coefficient (0.961) was observed for carcass length. The weights of all the five muscles evaluated differed slightly, but the left and right averages were not significantly different. Similarly, the mean difference for total intramuscular fat between left and right units of a muscle pair was not significant for any of the five muscles studied. Thus, the data obtained from left side of a Ghungroo pig carcass apparently was sufficiently accurate for most experimental purposes.Not Availabl
    corecore