3,483 research outputs found

    Collective charge density fluctuations in superconducting layered systems with bilayer unit cells

    Full text link
    Collective modes of bilayered superconducting superlattices (e.g., YBCO) are investigated within the conserving gauge-invariant ladder diagram approximation including both the nearest interlayer single electron tunneling and the Josephson-type Cooper pair tunneling. By calculating the density-density response function including Coulomb and pairing interactions, we examine the two collective mode branches corresponding to the in-phase and out-of-phase charge fluctuations between the two layers in the unit cell. The out-of-phase collective mode develops a long wavelength plasmon gap whose magnitude depends on the tunneling strength with the mode dispersions being insensitive to the specific tunneling mechanism (i.e., single electron or Josephson). We also show that in the presence of tunneling the oscillator strength of the out-of-phase mode overwhelms that of the in-phase-mode at k=0k_{\|} = 0 and finite kzk_z, where kzk_z and kk_{\|} are respectively the mode wave vectors perpendicular and along the layer. We discuss the possible experimental observability of the phase fluctuation modes in the context of our theoretical results for the mode dispersion and spectral weight.Comment: 9 pages, 3 figure

    Plasmons in coupled bilayer structures

    Full text link
    We calculate the collective charge density excitation dispersion and spectral weight in bilayer semiconductor structures {\it including effects of interlayer tunneling}. The out-of-phase plasmon mode (the ``acoustic'' plasmon) develops a long wavelength gap in the presence of tunneling with the gap being proportional to the square root (linear power) of the tunneling amplitude in the weak (strong) tunneling limit. The in-phase plasmon mode is qualitatively unaffected by tunneling. The predicted plasmon gap should be a useful tool for studying many-body effects.Comment: 10 pages, 6 figures. to appear in Phys. Rev. Let

    Estimates of electronic interaction parameters for LaMMO3_3 compounds (MM=Ti-Ni) from ab-initio approaches

    Full text link
    We have analyzed the ab-initio local density approximation band structure calculations for the family of perovskite oxides, LaMMO3_3 with MM=Ti-Ni within a parametrized nearest neighbor tight-binding model and extracted various interaction strengths. We study the systematics in these interaction parameters across the transition metal series and discuss the relevance of these in a many-body description of these oxides. The results obtained here compare well with estimates of these parameters obtained via analysis of electron spectroscopic results in conjunction with the Anderson impurity model. The dependence of the hopping interaction strength, t, is found to be approximately r3r^{-3}.Comment: 18 pages; 1 tex file+9 postscript files (appeared in Phys Rev B Oct 15,1996

    Colossal magnetoresistance in an ultra-clean weakly interacting 2D Fermi liquid

    Full text link
    We report the observation of a new phenomenon of colossal magnetoresistance in a 40 nm wide GaAs quantum well in the presence of an external magnetic field applied parallel to the high-mobility 2D electron layer. In a strong magnetic field, the magnetoresistance is observed to increase by a factor of ~300 from 0 to 45T without the system undergoing any metal-insulator transition. We discuss how this colossal magnetoresistance effect cannot be attributed to the spin degree-of-freedom or localization physics, but most likely emanates from strong magneto-orbital coupling between the two-dimensional electron gas and the magnetic field. Our observation is consistent with a field-induced 2D-to-3D transition in the confined electronic system

    Transport and percolation in a low-density high-mobility two-dimensional hole system

    Full text link
    We present a study of the temperature and density dependence of the resistivity of an extremely high quality two-dimensional hole system grown on the (100) surface of GaAs. For high densities in the metallic regime (p\agt 4 \times 10^{9} cm2^{-2}), the nonmonotonic temperature dependence (50300\sim 50-300 mK) of the resistivity is consistent with temperature dependent screening of residual impurities. At a fixed temperature of TT= 50 mK, the conductivity vs. density data indicates an inhomogeneity driven percolation-type transition to an insulating state at a critical density of 3.8×1093.8\times 10^9 cm2^{-2}.Comment: accepted for publication in PR

    Generalized survival in equilibrium step fluctuations

    Full text link
    We investigate the dynamics of a generalized survival probability S(t,R)S(t,R) defined with respect to an arbitrary reference level RR (rather than the average) in equilibrium step fluctuations. The exponential decay at large time scales of the generalized survival probability is numerically analyzed. S(t,R)S(t,R) is shown to exhibit simple scaling behavior as a function of system-size LL, sampling time δt\delta t, and the reference level RR. The generalized survival time scale, τs(R)\tau_s(R), associated with S(t,R)S(t,R) is shown to decay exponentially as a function of RR.Comment: 4 pages, 2 figure

    Contrasting Behavior of the 5/2 and 7/3 Fractional Quantum Hall Effect in a Tilted Field

    Full text link
    Using a tilted field geometry, the effect of an in-plane magnetic field on the even denominator nu = 5/2 fractional quantum Hall state is studied. The energy gap of the nu = 5/2 state is found to collapse linearly with the in-plane magnetic field above ~0.5 T. In contrast, a strong enhancement of the gap is observed for the nu = 7/3 state. The radically distinct tilted-field behaviour between the two states is discussed in terms of Zeeman and magneto-orbital coupling within the context of the proposed Moore-Read pfaffian wavefunction for the 5/2 fractional quantum Hall effect

    Intrinsic Gap of the nu=5/2 Fractional Quantum Hall State

    Full text link
    The fractional quantum Hall effect is observed at low field, in a regime where the cyclotron energy is smaller than the Coulomb interaction. The nu=5/2 excitation gap is measured to be 262+/-15 mK at ~2.6 T, in good agreement with previous measurements performed on samples with similar mobility, but with electronic density larger by a factor of two. The role of disorder on the nu=5/2 gap is examined. Comparison between experiment and theory indicates that a large discrepancy remains for the intrinsic gap extrapolated from the infinite mobility (zero disorder) limit. In contrast, no such large discrepancy is found for the nu=1/3 Laughlin state. The observation of the nu=5/2 state in the low-field regime implies that inclusion of non-perturbative Landau level mixing may be necessary to better understand the energetics of half-filled fractional quantum hall liquids.Comment: 5 pages, 4 figures; typo corrected, comment expande

    Measuring the condensate fraction of rapidly rotating trapped boson systems: off-diagonal order from the density

    Full text link
    We demonstrate a direct connection between the density profile of a system of ultra-cold trapped bosonic particles in the rapid-rotation limit and its condensate fraction. This connection can be used to probe the crossover from condensed vortex-lattice states to uncondensed quantum fluid states that occurs in rapidly rotating boson systems as the particle density decreases or the rotation frequency increases. We illustrate our proposal with a series of examples, including ones based on models of realistic finite trap systems, and comment on its application to freely expanding boson density profile measurements.Comment: 4 pages, 3 figures, version accepted for publication in Phys. Rev. Let

    Quasiparticle properties of a coupled quantum wire electron-phonon system

    Get PDF
    We study leading-order many-body effects of longitudinal optical (LO) phonons on electronic properties of one-dimensional quantum wire systems. We calculate the quasiparticle properties of a weakly polar one dimensional electron gas in the presence of both electron-phonon and electron-electron interactions. The leading-order dynamical screening approximation (GW approximation) is used to obtain the electron self-energy, the quasiparticle spectral function, and the quasiparticle damping rate in our calculation by treating electrons and phonons on an equal footing. Our theory includes effects (within the random phase approximation) of Fermi statistics, Landau damping, plasmon-phonon mode coupling, phonon renormalization, dynamical screening, and impurity scattering. In general, electron-electron and electron-phonon many-body renormalization effects are found to be nonmultiplicative and nonadditive in our theoretical results for quasiparticle properties.Comment: 21 pages, Revtex, 12 figures enclose
    corecore