5,389 research outputs found

    On the origin of magnetoresistance in Sr2_2FeMoO6_6

    Full text link
    We report detailed magnetization (MM) and magnetoresistance (MRMR) studies on a series of Sr2_2FeMoO6_6 samples with independent control on anti-site defect and grain boundary densities. These results, exhibiting a switching-like behavior of MRMR with MM, establish that the MRMR is controlled by the magnetic polarization of grain boundary regions, rather than of the grains within a resonant tunnelling mechanism.Comment: 4 pages, 4 figure

    Estimates of electronic interaction parameters for LaMMO3_3 compounds (MM=Ti-Ni) from ab-initio approaches

    Full text link
    We have analyzed the ab-initio local density approximation band structure calculations for the family of perovskite oxides, LaMMO3_3 with MM=Ti-Ni within a parametrized nearest neighbor tight-binding model and extracted various interaction strengths. We study the systematics in these interaction parameters across the transition metal series and discuss the relevance of these in a many-body description of these oxides. The results obtained here compare well with estimates of these parameters obtained via analysis of electron spectroscopic results in conjunction with the Anderson impurity model. The dependence of the hopping interaction strength, t, is found to be approximately r3r^{-3}.Comment: 18 pages; 1 tex file+9 postscript files (appeared in Phys Rev B Oct 15,1996

    Influence of quantum confinement on the ferromagnetism of (Ga,Mn)As diluted magnetic semiconductor

    Full text link
    We investigate the effect of quantum confinement on the ferromagnetism of diluted magnetic semiconductor Ga1x_{1-x}Mnx_xAs using a combination of tight-binding and density functional methods. We observe strong majority-spin Mn dd-As pp hybridization, as well as half metallic behavior, down to sizes as small as 20 \AA in diameter. Below this critical size, the doped holes are self-trapped by the Mn-sites, signalling both valence and electronic transitions. Our results imply that magnetically doped III-V nanoparticles will provide a medium for manipulating the electronic structure of dilute magnetic semiconductors while conserving the ferromagnetic properties and even enhancing it in certain size regime.Comment: 4 pages, 3 figure

    The quasiparticle spectral function in doped graphene

    Full text link
    We calculate the real and imaginary electron self-energy as well as the quasiparticle spectral function in doped graphene taking into account electron-electron interaction in the leading order dynamically screened Coulomb coupling. Our theory provides the basis for calculating {\it all} one-electron properties of extrinsic graphene. Comparison with existing ARPES measurements shows broad qualitative agreement between theory and experiment. We also calculate the renormalized graphene momentum distribution function, finding a typical Fermi liquid discontinuity at k_F. We also provide a critical discussion of the relevant many body approximations (e.g. RPA) for graphene.Comment: 5 pages, 3 figure

    Magnetization in electron- and Mn- doped SrTiO3

    Full text link
    Mn-doped SrTiO_3.0, when synthesized free of impurities, is a paramagnetic insulator with interesting dielectric properties. Since delocalized charge carriers are known to promote ferromagnetism in a large number of systems via diverse mechanisms, we have looked for the possibility of any intrinsic, spontaneous magnetization by simultaneous doping of Mn ions and electrons into SrTiO_3 via oxygen vacancies, thereby forming SrTi_(1-x)Mn_xO_(3-d), to the extent of making the doped system metallic. We find an absence of any enhancement of the magnetization in the metallic sample when compared with a similarly prepared Mn doped, however, insulating sample. Our results, thus, are not in agreement with a recent observation of a weak ferromagnetism in metallic Mn doped SrTiO_3 system.Comment: 10 pages and 4 figure

    Experimental and materials considerations for the topological superconducting state in electron and hole doped semiconductors: searching for non-Abelian Majorana modes in 1D nanowires and 2D heterostructures

    Full text link
    In proximity to an s-wave superconductor, a one- or two-dimensional, electron- or hole-doped semiconductor with a sizable spin-orbit coupling and a Zeeman splitting can support a topological superconducting (TS) state. The semiconductor TS state has Majorana fermions as localized zero-energy excitations at order parameter defects such as vortices and sample edges. Here we examine the effects of quenched disorder from the semiconductor surface on the stability of the TS state in both electron- and hole-doped semiconductors. By considering the interplay of broken time reversal symmetry (due to Zeeman splitting) and disorder we derive an expression for the disorder suppression of the superconducting quasiparticle gap in the TS state. We conclude that the effects of disorder can be minimized by increasing the ratio of the spin-orbit energy with the Zeeman splitting. By giving explicit numbers we show that a stable TS state is possible in both electron- and hole-doped semiconductors for experimentally realistic values of parameters. We discuss possible suitable semiconductor materials which should be the leading candidates for the Majorana search in solid state systems.Comment: 11 pages, 2 figures: v3 published versio
    corecore