7 research outputs found

    Quantum fast-forwarding: Markov chains and graph property testing

    Get PDF
    We introduce a new tool for quantum algorithms called quantum fast-forwarding (QFF). The tool uses quantum walks as a means to quadratically fast-forward a reversible Markov chain. More specifically, with P the Markov chain transition matrix and D=P∘PT its discriminant matrix (D=P if P is symmetric), we construct a quantum walk algorithm that for any quantum state |v⟩ and integer t returns a quantum state Ï”-close to the state Dt|v⟩/∄Dt|v⟩∄. The algorithm uses O(∄Dt|v⟩∄−1tlog(ϔ∄Dt|v⟩∄)−1√) expected quantum walk steps and O(∄Dt|v⟩∄−1) expected reflections around |v⟩. This shows that quantum walks can accelerate the transient dynamics of Markov chains, complementing the line of results that proves the acceleration of their limit behavior. We show that this tool leads to speedups on random walk algorithms in a very natural way. Specifically we consider random walk algorithms for testing the graph expansion and clusterability, and show that we can quadratically improve the dependency of the classical property testers on the random walk runtime. Moreover, our quantum algorithm exponentially improves the space complexity of the classical tester to logarithmic. As a subroutine of independent interest, we use QFF for determining whether a given pair of nodes lies in the same cluster or in separate clusters. This solves a robust version of s-t connectivity, relevant in a learning context for classifying objects among a set of examples. The different algorithms crucially rely on the quantum speedup of the transient behavior of random walks

    Quantum filtering using POVM measurements

    No full text

    One hundred second bit-flip time in a two-photon dissipative oscillator

    No full text
    Current implementations of quantum bits (qubits) continue to undergo too many errors to be scaled into useful quantum machines. An emerging strategy is to encode quantum information in the two meta-stable pointer states of an oscillator exchanging pairs of photons with its environment, a mechanism shown to provide stability without inducing decoherence. Adding photons in these states increases their separation, and macroscopic bit-flip times are expected even for a handful of photons, a range suitable to implement a qubit. However, previous experimental realizations have saturated in the millisecond range. In this work, we aim for the maximum bit-flip time we could achieve in a two-photon dissipative oscillator. To this end, we design a Josephson circuit in a regime that circumvents all suspected dynamical instabilities, and employ a minimally invasive fluorescence detection tool, at the cost of a two-photon exchange rate dominated by single-photon loss. We attain bit-flip times of the order of 100 seconds for states pinned by two-photon dissipation and containing about 40 photons. This experiment lays a solid foundation from which the two-photon exchange rate can be gradually increased, thus gaining access to the preparation and measurement of quantum superposition states, and pursuing the route towards a logical qubit with built-in bit-flip protection
    corecore