833 research outputs found

    A microbial symbiosis factor prevents intestinal inflammatory disease

    Get PDF
    Humans are colonized by multitudes of commensal organisms representing members of five of the six kingdoms of life; however, our gastrointestinal tract provides residence to both beneficial and potentially pathogenic microorganisms. Imbalances in the composition of the bacterial microbiota, known as dysbiosis, are postulated to be a major factor in human disorders such as inflammatory bowel disease. We report here that the prominent human symbiont Bacteroides fragilis protects animals from experimental colitis induced by Helicobacter hepaticus, a commensal bacterium with pathogenic potential. This beneficial activity requires a single microbial molecule (polysaccharide A, PSA). In animals harbouring B. fragilis not expressing PSA, H. hepaticus colonization leads to disease and pro-inflammatory cytokine production in colonic tissues. Purified PSA administered to animals is required to suppress pro-inflammatory interleukin-17 production by intestinal immune cells and also inhibits in vitro reactions in cell cultures. Furthermore, PSA protects from inflammatory disease through a functional requirement for interleukin-10-producing CD4+ T cells. These results show that molecules of the bacterial microbiota can mediate the critical balance between health and disease. Harnessing the immunomodulatory capacity of symbiosis factors such as PSA might potentially provide therapeutics for human inflammatory disorders on the basis of entirely novel biological principles

    Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. III. Lipid II is an in vivo peptidoglycan substrate for sortase-catalyzed surface protein anchoring

    Get PDF
    Surface proteins of Staphylococcus aureus are anchored to the cell wall peptidoglycan by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Surface proteins are first synthesized in the bacterial cytoplasm and then transported across the cytoplasmic membrane. Cleavage of the N-terminal signal peptide of the cytoplasmic surface protein P1 precursor generates the extracellular P2 species, which is the substrate for the cell wall anchoring reaction. Sortase, a membrane-anchored transpeptidase, cleaves P2 between the threonine (T) and the glycine (G) of the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine and the amino group of cell wall cross-bridges. We have used metabolic labeling of staphylococcal cultures with [32P]phosphoric acid to reveal a P3 intermediate. The 32P-label of immunoprecipitated surface protein is removed by treatment with lysostaphin, a glycyl-glycine endopeptidase that separates the cell wall anchor structure. Furthermore, the appearance of P3 is prevented in the absence of sortase or by the inhibition of cell wall synthesis. 32P-Labeled cell wall anchor species bind to nisin, an antibiotic that is known to form a complex with lipid II. Thus, it appears that the P3 intermediate represents surface protein linked to the lipid II peptidoglycan precursor. The data support a model whereby lipid II-linked polypeptides are incorporated into the growing peptidoglycan via the transpeptidation and transglycosylation reactions of cell wall synthesis, generating mature cell wall-linked surface protein

    Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus: sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH2-Gly3 substrates

    Get PDF
    Staphylococcus aureus sortase anchors surface proteins to the cell wall envelope by cleaving polypeptides at the LPXTG motif. Surface proteins are linked to the peptidoglycan by an amide bond between the C-terminal carboxyl and the amino group of the pentaglycine cross-bridge. We find that purified recombinant sortase hydrolyzed peptides bearing an LPXTG motif at the peptide bond between threonine and glycine. In the presence of NH2-Gly3, sortase catalyzed exclusively a transpeptidation reaction, linking the carboxyl group of threonine to the amino group of NH2-Gly3. In the presence of amino group donors the rate of sortase mediated cleavage at the LPXTG motif was increased. Hydrolysis and transpeptidation required the sulfhydryl of cysteine 184, suggesting that sortase catalyzed the transpeptidation reaction of surface protein anchoring via the formation of a thioester acyl-enzyme intermediate

    Human microbiome science: vision for the future, Bethesda, MD, July 24 to 26, 2013

    Get PDF
    A conference entitled ‘Human microbiome science: Vision for the future’ was organized in Bethesda, MD from July 24 to 26, 2013. The event brought together experts in the field of human microbiome research and aimed at providing a comprehensive overview of the state of microbiome research, but more importantly to identify and discuss gaps, challenges and opportunities in this nascent field. This report summarizes the presentations but also describes what is needed for human microbiome research to move forward and deliver medical translational applications

    Breathe easy: microbes protect from allergies

    Get PDF
    Changes in gut microbial composition have been linked to inflammatory bowel disease, obesity and allergies in humans. A new study shows that pattern recognition of commensal bacteria by B cells reduces allergic inflammation in mice, adding to the mounting evidence for the 'hygiene hypothesis' (pages 538–546)

    A Pathobiont of the Microbiota Balances Host Colonization and Intestinal Inflammation

    Get PDF
    The gastrointestinal tract harbors a diverse microbiota that has coevolved with mammalian hosts. Though most associations are symbiotic or commensal, some resident bacteria (termed pathobionts) have the potential to cause disease. Bacterial type VI secretion systems (T6SSs) are one mechanism for forging host-microbial interactions. Here we reveal a protective role for the T6SS of Helicobacter hepaticus, a Gram-negative bacterium of the intestinal microbiota. H. hepaticus mutants with a defective T6SS display increased numbers within intestinal epithelial cells (IECs) and during intestinal colonization. Remarkably, the T6SS directs an anti-inflammatory gene expression profile in IECs, and CD4+ T cells from mice colonized with T6SS mutants produce increased interleukin-17 in response to IECs presenting H. hepaticus antigens. Thus, the H. hepaticus T6SS limits colonization and intestinal inflammation, promoting a balanced relationship with the host. We propose that disruption of such balances contributes to human disorders such as inflammatory bowel disease and colon cancer

    Disruption of the gut microbiome as a risk factor for microbial infections

    Get PDF
    The discovery that microorganisms can be etiologic agents of disease has driven clinical, research and public health efforts to reduce exposure to bacteria. However, despite extensive campaigns to eradicate pathogens (via antibiotics, vaccinations, hygiene, sanitation, etc.), the incidence and/or severity of multiple immune-mediated diseases including, paradoxically, infectious disease have increased in recent decades. We now appreciate that most microbes in our environment are not pathogenic, and that many human-associated bacteria are symbiotic or beneficial. Notably, recent examples have emerged revealing that the microbiome augments immune system function. This review will focus on how commensal-derived signals enhance various aspects of the host response against pathogens. We suggest that modern lifestyle advances may be depleting specific microbes that enhance immunity against pathogens. Validation of the notion that absence of beneficial microbes is a risk factor for infectious disease may have broad implications for future medical practices

    Innate immune recognition of the microbiota promotes host-microbial symbiosis

    Get PDF
    Pattern-recognition receptors (PRRs) are traditionally known to sense microbial molecules during infection to initiate inflammatory responses. However, ligands for PRRs are not exclusive to pathogens and are abundantly produced by the resident microbiota during normal colonization. Mechanism(s) that underlie this paradox have remained unclear. Recent studies reveal that gut bacterial ligands from the microbiota signal through PRRs to promote development of host tissue and the immune system, and protection from disease. Evidence from both invertebrate and vertebrate models reveals that innate immune receptors are required to promote long-term colonization by the microbiota. This emerging perspective challenges current models in immunology and suggests that PRRs may have evolved, in part, to mediate the bidirectional cross-talk between microbial symbionts and their hosts
    • …
    corecore