5 research outputs found

    Pattern of Arsenic Exposure to Children: New born to toddler Stages

    Get PDF
    Elevated levels of arsenic are found in several countries which exceed the World Health Organization (WHO) drinking water guideline (10µg/L), affecting 100 million people globally. Its prevalence varies in different countries among which Andean Argentina and South-East Asia are most severely affected. Bangladesh is considered a major As-contaminated zone and more than 10µg/L of As is present in the tube wells installed during the last decade. As-contaminated water poses serious threat to the population in general, and children in particular. School-age children exposed to As are found to be deficient in cognitive functions in several countries. Although As contamination is a global phenomenon reports on children’s exposure to As, through breast milk pathway is limited. Findings of the few global studies show low level of As in breast milk even in populations exposed to high levels. Several reports indicate the potential counterbalancing the impact of exposures of chemicals through breast milk which outweigh the hazards of feeding contaminated breast milk. On the other hand, the presence of toxic elements in powdered and liquid infant milk is a cause of concern considering the probable health problems in infants. It is surmised from available data that although the lactating mothers resided in highly As-contaminated zones the concentration of the toxic metal is low in the breast milk and breast feeding infants are protected from the toxic effects of As. Therefore breast feeding is still the best way to protect the infants in As-contaminated zones as per WHO recommendations

    The Uniqueness of Achatina fulica in its Evolutionary Success

    Get PDF
    The increasing load of environmental pollutants poses a serious threat over the globe. In this vulnerable situation, it is essential to have alternative sources of medicines, may be from invertebrates. Among invertebrates, although molluscs are known for their consumption as food and ethno‐medicinal use, the importance of these animals is still overlooked. Presently attention has been geared toward molluscs including Achatina fulica which are now considered as one of the most evolutionary successful animals. During the last few decades, researchers are trying to decipher their complex immune system to harvest valuable molecules to treat human diseases. In the present review, the existence of important immunological factors in Achatina is discussed addressing the coagulation system, innate immune molecules, bioactive proteins and lastly the enigmatic C‐reactive proteins

    Anti-bacterial activity of <i style="mso-bidi-font-style:normal">Achatina</i> CRP and its mechanism of action

    Full text link
    692-704The physiological role of C-reactive protein (CRP), the classical acute-phase protein, is not well documented, despite many reports on biological effects of CRP in vitro and in model systems in vivo. It has been suggested that CRP protects mice against lethal toxicity of bacterial infections by implementing immunological responses. In Achatina fulica CRP is a constitutive multifunctional protein in haemolymph and considered responsible for their survival in the environment for millions of years. The efficacy of Achatina CRP (ACRP) was tested against both Salmonella typhimurium and Bacillus subtilis infections in mice where endogenous CRP level is negligible even after inflammatory stimulus. Further, growth curves of the bacteria revealed that ACRP (50 µg/mL) is bacteriostatic against gram negative salmonellae and bactericidal against gram positive bacilli. ACRP induced energy crises in bacterial cells, inhibited key carbohydrate metabolic enzymes such as phosphofructokinase in glycolysis, isocitrate dehydrogenase in TCA cycle, isocitrate lyase in glyoxylate cycle and fructose-1,6-bisphosphatase in gluconeogenesis. ACRP disturbed the homeostasis of cellular redox potential as well as reduced glutathione status, which is accompanied by an enhanced rate of lipid peroxidation. Annexin V-Cy3/CFDA dual staining clearly showed ACRP induced apoptosis-like death in bacterial cell population. Moreover, immunoblot analyses also indicated apoptosis-like death in ACRP treated bacterial cells, where activation of poly (ADP-ribose) polymerase-1 (PARP) and caspase-3 was noteworthy. It is concluded that metabolic impairment by ACRP in bacterial cells is primarily due to generation of reactive oxygen species and ACRP induced anti-bacterial effect is mediated by metabolic impairment leading to apoptosis-like death in bacterial cells. </span

    Mollusc C-reactive protein crosses species barrier and reverses hepatotoxicity of lead in rodent models

    Full text link
    623-634Achatina fulica C-reactive protein (ACRP) reversed the toxic effects of lead nitrate both in vivo in mice and in vitro in rat hepatocytes restoring the basal level of cell viability, lipid peroxidation, reduced glutathione and superoxides. Cytotoxicity was also significantly ameliorated in rat hepatocytes by in vitro pre-treatments with individual subunits (60, 62, 90 and 110 kDa) of ACRP. Annexin V-Cy3/CFDA dual staining showed significant reduction in the number of apoptotic hepatocytes pre-treated with ACRP. ACRP induced restoration of mitochondrial membrane potential was remarkable. ACRP pre-treatment prevented Pb-induced apoptosis mediated by caspase activation. The antagonistic effect of ACRP may be due to scavenging of reactive oxygen species which maintained the homeostasis of cellular redox potential as well as reduced glutathione status. The results suggest that ACRP crosses the species barrier and it may be utilized as a viable exogenous agent of cytoprotection against heavy metal related toxicity
    corecore