533 research outputs found

    Design of Ultrafast All-Optical Pseudo Binary Random Sequence Generator, 4-bit Multiplier and Divider using 2 x 2 Silicon Micro-ring Resonators

    Full text link
    All-optical devices are essential for next generation ultrafast, ultralow-power and ultrahigh bandwidth information processing systems. Silicon microring resonators (SiMRR) provide a versatile platform for all-optical switching and CMOS-compatible computing, with added advantages of high Q-factor, tunability, compactness, cascadability and scalability. A detailed theoretical analysis of ultrafast all-optical switching 2 x 2 SiMRRs has been carried out incorporating the effects of two photon absorption induced free-carrier injection and thermo optic effect. The results have been used to design simple and compact all-optical 3-bit and 4-bit pseudo-random binary sequence generators and the first reported designs of all-optical 4 x 4-bit multiplier and divider. The designs have been optimized for low-power, ultrafast operation with high modulation depth, enabling logic operations at 45 Gbps.Comment: 13 pages, 4 figures. Submitted at Journal (Optik) for publicatio

    Schr\"odinger Spectrum based Continuous Cuff-less Blood Pressure Estimation using Clinically Relevant Features from PPG Signal and its Second Derivative

    Full text link
    The presented study aims to estimate blood pressure (BP) using photoplethysmogram (PPG) signals while employing multiple machine learning models. The study proposes a novel algorithm for signal reconstruction, which utilizes the semi-classical signal analysis (SCSA) technique. The proposed algorithm optimises the semi-classical constant and eliminates the trade-off between complexity and accuracy in reconstruction. The reconstructed signals' spectral features are extracted and incorporated with clinically relevant PPG and its second derivative's (SDPPG) morphological features. The developed method was assessed using a publicly available virtual in-silico dataset with more than 4000 subjects, and the Multi-Parameter Intelligent Monitoring in Intensive Care Units dataset. Results showed that the method attained a mean absolute error of 5.37 and 2.96 mmHg for systolic and diastolic BP, respectively, using the CatBoost supervisory algorithm. This approach met the standards set by the Advancement of Medical Instrumentation, and achieved Grade A for all BP categories in the British Hypertension Society protocol. The proposed framework performs well even when applied to a combined database of the MIMIC-III and the Queensland dataset. This study also evaluates the proposed method's performance in a non-clinical setting with noisy and deformed PPG signals, to validate the efficacy of the SCSA method. The noise stress tests showed that the algorithm maintained its key feature detection, signal reconstruction capability, and estimation accuracy up to a 10 dB SNR ratio. It is believed that the proposed cuff-less BP estimation technique has the potential to perform well on resource-constrained settings due to its straightforward implementation approach.Comment: 16 pages, 8 figures, 8 tables, submitted to Biomedical Signal Processing and Control, Elsevie

    Galactic molecular clouds as sources of secondary positrons

    Full text link
    Secondary positrons produced inside Galactic Molecular Clouds (GMCs) can significantly contribute to the observed positron spectrum on Earth. Multi-wavelength data of GMCs are particularly useful in building this model. A very recent survey implemented the optical/IR dust extinction measurements to trace 567 GMCs within 4 kpc of Earth, residing in the Galactic plane. We use the updated catalog of GMCs reported in recent papers, distributed in the Galactic plane, to find the secondary positrons produced in them in interactions of cosmic rays with molecular hydrogen. Moreover, by analyzing the \textit{Fermi}-LAT data, new GMCs have been discovered near the Galactic plane. We also include some of these GMCs closest to the Earth, where cosmic ray interactions produce secondaries. It has been speculated earlier that cosmic rays may be reaccelerated in some GMCs. We select 7 GMCs out of 567 GMCs recently reported, within 4 kpc of Earth, where reacceleration due to magnetized turbulence is assumed. We include a hardened component of secondary positrons produced from the interaction of reaccelerated CRs in those 7 GMCs. We use publicly available code \texttt{DRAGON} for our simulation setup to study CR propagation in the Galaxy and show that the observed positron spectrum can be well explained in the energy range of 1 to 1000 GeV by our self-consistent model.Comment: Proceedings of the 37th International Cosmic Ray Conference (ICRC 2021
    • …
    corecore