16,971 research outputs found

    New magic number for neutron rich Sn isotopes

    Full text link
    The variation of E(2+_1) of (134-140)Sn calculated with empirical SMPN interaction has striking similarity with that of experimental E(2+_1) of even-even (18-22)O and (42-48)Ca, showing clearly that N=84-88 spectra exhibit the effect of gradual filling up of \nu(2f_{7/2}) orbital which finally culminates in a new shell closure at N=90. Realistic two-body interaction CWG does not show this feature. Spin-tensor decomposition of SMPN and CWG interactions and variation of their components with valence neutron number reveals that the origin of the shell closure at 140Sn lies in the three body effects. Calculations with CWG3, which is obtained by including a simple three-body monopole term in the CWG interaction, predict decreasing E(2+_1) for (134-138)Sn and a shell closure at 140Sn.Comment: 4 pages, 5 figure

    High-spin structure and Band Termination in 103^{103}Cd

    Full text link
    Excited states of the neutron deficient 103^{103}Cd nucleus have been investigated via the 72^{72}Ge(35^{35}Cl, p3n) reaction at beam energy of 135 MeV by use of in-beam spectroscopic methods. Gamma rays depopulating the excited states were detected using the Gammasphere spectrometer with high-fold γ\gamma-ray coincidences. A quadrupole γ\gamma-ray coincidence analysis (γ4\gamma^{4}) has been used to extend the known level scheme. The positive parity levels have been established up to J=35/2J = 35/2\hbar and Ex=7.071E_{x} = 7.071 MeV. In addition to the observation of highly-fragmented level scheme belonging to the positive-parity sequences at Ex_{x}\sim 5 MeV, the termination of a negative-parity sequence connected by E2E2 transitions has been established at J=47/2J = 47/2 \hbar and Ex=11.877E_{x} = 11.877 MeV. The experimental results corresponding to both the positive- and negative-parity sequences have been theoretically interpreted in the framework of the core particle coupling model. Evidence is presented for a shape change from collective prolate to non-collective oblate above the Jπ=39/2J^{\pi} = 39/2^{-} (8011 keV) level and for a smooth termination of the negative-parity band.Comment: 19 pages, 8 figures. Submitted to Phys. Rev.

    Generalized tt-jj Model

    Full text link
    By parameterizing the t-j model we present a new electron correlation model with one free parameter for high-temperature superconductivity. This model is of SUq(1,2)SU_{q}(1,2) symmetry. The energy spectrums are shown to be modulated by the free parameter in the model. The solution and symmetric structures of the Hilbert space, as well as the Bethe ansatz approach are discussed for special cases.Comment: 13 page, Latex, to appear in J. Phys.

    Hadronic aspects of exotic baryons

    Get PDF
    In this talk I look into three different topics, addressing first the possibility that the Θ+\Theta^+ is a bound state of KπNK \pi N, exploiting the results of this study to find out the contribution of two meson and one baryon components in the baryon antidecuplet and in the third place I present results on a new resonant exotic baryonic state which appears as dynamically generated by the Weinberg Tomozawa ΔK\Delta K interaction.Comment: Talk at the International Workshop PENTAQUARK0

    On the determination of Θ+\Theta^+ quantum numbers and other topics of exotic baryons

    Get PDF
    In this talk I look into three different topics, addressing first a method to determine the quantum numbers of the Θ+\Theta^+, then exploiting the possibility that the Θ+\Theta^+ is a bound state of KπNK \pi N and in the third place I present results on a new resonant exotic baryonic state which appears as dynamically generated by the Weinberg Tomozawa ΔK\Delta K interaction.Comment: 9 pags. Talk in the NSTAR04 Workshop, Grenoble, march 200

    High resolution imaging of IgG and IgM molecules by scanning tunneling microscopy in air condition

    Get PDF
    A scanning tunneling microscope is a powerful tool for obtaining micrographs from conductive and semiconductive materials. The imaging technique has recently been improved for microscopy of nanostructured biomaterials on highly ordered atomic surfaces. We describe, here, high resolution imaging of individual IgM and IgG using a scanning tunneling microscope (Nama-STM) in air condition. The biomolecules were immobilized on the surface of Highly Ordered Pyrolytic Graphite (HOPG). Obtained micrographs could reveal structural details of immunoglobulins G and M on the atomically flat surfaces. Obtained results confirmed that STM could be more useful than other microscopy techniques for the analysis of single biomolecules. © 2012 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved

    Towards a microscopic construction of flavour vacua from a space-time foam model

    Full text link
    The effect on flavour oscillations of simple expanding background space-times, motivated by some D-particle foam models, is calculated for a toy-model of bosons with flavour degrees of freedom. The presence of D-particle defects in the space-time, which can interact non trivially (via particle capture) with flavoured particles in a flavour non-preserving way, generates mixing in the effective field theory of low-energy string excitations. Moreover, the recoil of the D-particle defect during the capture/scattering process implies Lorentz violation, which however may be averaged to zero in isotropic D-particle populations, but implies non-trivial effects in correlators. Both features imply that the flavoured mixed state sees a non-trivial flavour (Fock-space) vacuum of a type introduced earlier by Blasone and Vitiello in a generic context of theories with mixing. We discuss the orthogonality of the flavour vacua to the usual Fock vacua and the effect on flavour oscillations in these backgrounds. Furthermore we analyse the equation of state of the Flavour vacuum, and find that, for slow expansion rates induced by D particle recoil, it is equivalent to that of a cosmological constant. Some estimates of these novel non-perturbative contribution to the vacuum energy are made. The contribution vanishes if the mass difference and the mixing angle of the flavoured states vanish.Comment: 27 pages RevTex, 2 eps figures incorporate
    corecore