49 research outputs found
Sucrose Acceptance and Different Forms of Associative Learning of the Honey Bee (Apis Mellifera L.) in the Field and Laboratory
The experiments analyze different forms of learning and 24-h retention in the field and in the laboratory in bees that accept sucrose with either low (â€3%) or high (â„30% or â„50%) concentrations. In the field we studied color learning at a food site and at the hive entrance. In the laboratory olfactory conditioning of the proboscis extension response (PER) was examined. In the color learning protocol at a feeder, bees with low sucrose acceptance thresholds (â€3%) show significantly faster and better acquisition than bees with high thresholds (â„50%). Retention after 24âh is significantly different between the two groups of bees and the choice reactions converge. Bees with low and high acceptance thresholds in the field show no differences in the sucrose sensitivity PER tests in the laboratory. Acceptance thresholds in the field are thus a more sensitive behavioral measure than PER responsiveness in the laboratory. Bees with low acceptance thresholds show significantly better acquisition and 24-h retention in olfactory learning in the laboratory compared to bees with high thresholds. In the learning protocol at the hive entrance bees learn without sucrose reward that a color cue signals an open entrance. In this experiment, bees with high sucrose acceptance thresholds showed significantly better learning and reversal learning than bees with low thresholds. These results demonstrate that sucrose acceptance thresholds affect only those forms of learning in which sucrose serves as the reward. The results also show that foraging behavior in the field is a good predictor for learning behavior in the field and in the laboratory
DNA single-strand break repair and spinocerebellar ataxia with axonal neuropathy-1
DNA single-strand breaks (SSBs) are the commonest DNA lesions arising spontaneously in cells, and if not repaired may block transcription or may be converted into potentially lethal/clastogenic DNA double-strand breaks (DSBs). Recently, evidence has emerged that defects in the rapid repair of SSBs preferentially impact the nervous system. In particular, spinocerebellar ataxia with axonal neuropathy (SCAN1) is a human disease that is associated with mutation of TDP1 (tyrosyl DNA phosphodiesterase 1) protein and with a defect in repairing certain types of SSBs. Although SCAN1 is a rare neurodegenerative disorder, understanding the molecular basis of this disease will lead to better understanding of neurodegenerative processes. Here we review recent progress in our understanding of TDP1, single-strand break repair (SSBR), and neurodegenerative disease
Targeting Huntingtonâs disease through histone deacetylases
Huntingtonâs disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD
Deciphering the generation of bone marrow resident memory CD4 T cells in the spleen
Langlebige GedĂ€chtnis-CD4 T Lymphozyten spielen eine entscheidende Rolle fĂŒr die Bildung, Erhaltung und Reaktivierung anderer GedĂ€chtnislymphozyten. Im Verlauf einer Immunreaktion wandern einige antigen-erfahrene CD4 T Zellen aus den sekundĂ€r lymphoiden Organen (SLO) ins Knochenmark (KM), wo sie als professionelle GedĂ€chtnis-CD4 T Zellen ruhen und ĂŒberdauern. Es ist jedoch weitgehend unverstanden wie die VorlĂ€uferzellen in SLO gebildet werden. Der erste Teil dieser Arbeit identifiziert aktivierte CD49b+T-bet+/CXCR3+ CD4 T Zellen der Milz als VorlĂ€uferzellen von KM-GedĂ€chtnis-CD4 T Zellen. Der zweite Teil der Arbeit zeigt, dass die VorlĂ€uferzellen nach einer verstĂ€rkten Zellproliferation und lĂ€ngerer kognitiver Interaktion mit dendritischen Zellen wĂ€hrend der spĂ€ten Aktivierungsphase der primĂ€ren Immunantwort entstehen. Die Behandlung mit einem Zytostatikum oder die spĂ€te Blockade des kostimulatorischen CD28/B7-Signalweges verhindert wiederum deren Generierung. Fluoreszenzfarbstoffmarkierungsexperimente zeigen, dass mit zunehmender Zellteilung die Expression des Chemokinrezeptors CCR7 in den VorlĂ€uferzellen verringert ist und die Expression des Zytokinrezeptors IL-2Rb erhöht ist. CCR7 ist fĂŒr die Persistenz in der T-Zellzone von SLO entscheidend, sowie IL-2Rb fĂŒr das langfristige Ăberleben der Zellen. Der dritte Teil dieser Arbeit untersucht die Rolle von B Zellen fĂŒr die Etablierung des CD4 T-ZellgedĂ€chtnisses im KM. B Zellen wirken sich in der frĂŒhen Phase einer Immunantwort negativ auf die Akkumulation von GedĂ€chtnis CD4 T VorlĂ€uferzellen im KM aus, beeinflussen jedoch nicht die Proliferation von aktivierten CD4 T Zellen in der Milz wĂ€hrend der Aktivierungsphase. Die Ergebnisse dieser Arbeit liefern neue Einblicke in die Generierung von GedĂ€chtnis CD4 T Zellen des KM, die fĂŒr neue AnsĂ€tze zur therapeutischen StĂ€rkung des ImmungedĂ€chtnisses im Rahmen von Impfungen oder dessen Ablation bei Autoimmunerkrankungen beitragen können.Long-lived memory CD4 T lymphocytes play a crucial role in the generation, maintenance and reactivation of other memory lymphocytes. During an immune reaction, some antigen-experienced CD4 T cells relocate from secondary lymphoid organs (SLOs) to the bone marrow (BM) and reside and rest there as professional memory CD4 T cells. However, it remains elusive how the precursors of BM memory CD4 T cells are generated in SLOs. The first part of this thesis identifies splenic CD49b+T-bet+/CXCR3+ activated CD4 T cells as the precursors of BM memory CD4 T cells. The second part of this thesis describes that precursors of BM memory CD4 T cells are generated following enhanced cell proliferation and prolonged cognate interactions with dendritic cells (DCs) during the late activation phase of a primary immune response. Treatment with a cytostatic drug or blockage of the CD28/B7 costimulatory pathway in the late activation phase in turn abrogates the generation of precursors of BM memory CD4 T cells. Fluorescent-dye labeling experiments demonstrate that the more CD49b+CXCR3+ activated CD4 T cells divide, the more they lose the expression of CCR7, a chemokine receptor crucial for the persistence in the T cell zone of SLOs, and gain the expression of IL-2Rb, a cytokine receptor crucial for long-term survival. The third part of this thesis investigates the role of B cells for the establishment of resting CD4 T cell memory in the BM. B cells negatively impact the accumulation of memory CD4 T cell precursors in the BM during the early phase of an immune response but do not affect the cell division of activated CD4 T cells in the spleen during the activation phase. In sum, the results obtained in this thesis provide new insight into the generation of BM memory CD4 T cells that may help for the therapeutic strengthening of immune memory in the context of vaccination or its abolishment within the scope of autoimmune diseases