6 research outputs found

    Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

    Get PDF
    PPARs are ligand activated transcription factors. PPAR agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPAR . The use of synthetic PPAR ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPAR in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer

    Advances in Biomedical Infrastructure 2013

    No full text

    Novel phytochemical antibiotic conjugates as multitarget inhibitors of pseudomononas aeruginosa GyrB/ParE and DHFR

    Get PDF
    Background: There is a dearth of treatment options for community-acquired and nosocomial Pseudomonas infections due to several rapidly emerging multidrug resistant phenotypes, which show resistance even to combination therapy. As an alternative, developing selective promiscuous hybrid compounds for simultaneous modulation of multiple targets is highly appreciated because it is difficult for the pathogen to develop resistance when an inhibitor has activity against multiple targets. Methods: In line with our previous work on phytochemical–antibiotic combination assays and knowledge-based methods, using a fragment combination approach we here report a novel drug design strategy of conjugating synergistic phytochemical–antibiotic combinations into a single hybrid entity for multi-inhibition of P. aeruginosa DNA gyrase subunit B (GyrB)/topoisomerase IV subunit B (ParE) and dihydrofolate reductase (DHFR) enzymes. The designed conjugates were evaluated for their multitarget specificity using various computational methods including docking and dynamic simulations, drug-likeness using molecular properties calculations, and pharmacophoric features by stereoelectronic property predictions. Results: Evaluation of the designed hybrid compounds based on their physicochemical properties has indicated that they are promising drug candidates with drug-like pharmacotherapeutic profiles. In addition, the stereoelectronic properties such as HOMO (highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbital), and MEP (molecular electrostatic potential) maps calculated by quantum chemical methods gave a good correlation with the common pharmacophoric features required for multitarget inhibition. Furthermore, docking and dynamics simulations revealed that the designed compounds have favorable binding affinity and stability in both the ATP-binding sites of GyrB/ParE and the folate-binding site of DHFR, by forming strong hydrogen bonds and hydrophobic interactions with key active site residues. Conclusion: This new design concept of hybrid “phyto-drug” scaffolds, and their simultaneous perturbation of well-established antibacterial targets from two unrelated pathways, appears to be very promising and could serve as a prospective lead in multitarget drug discovery.Published versio

    Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

    Get PDF
    PPARs are ligand activated transcription factors. PPARÎł agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARÎł. The use of synthetic PPARÎł ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARÎł in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer

    Hybrid-drug design targeting pseudomonas aeruginosa DHPS and DHFR

    No full text
    In this study, we successfully present the dual-target design hypothesis to inhibit both dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR) enzymes using a novel scheme that integrates our previous antibiotic-phytochemical interaction data, fragment combination and knowledge-based methods. Both the enzymes are well established antibacterial targets from folate biosynthesis pathway and their synergistic modulation by a single hybrid entity may have profound therapeutic benefits. Evaluation of the designed hybrid compounds based on their physico-chemical properties has indicated them as promising drug candidates with drug-like pharmacotherapeutic profiles. In addition, the stereo-electronic properties such as HOMO, LUMO and MEP maps calculated by quantum chemical methods gave a good correlation with the common pharmacophoric features required for dual-site interactions. Furthermore, docking and dynamics simulation studies reveal that the designed hybrid compounds have favorable binding affinity and stability in both pterin-binding site of DHPS and folate-binding site of DHFR by forming strong hydrogen bonds and hydrophobic interactions with key active-site residues. Looking forward this study could serve as a prospective lead in the process of new natural-product based hybrid-drugs development
    corecore