5 research outputs found

    ANTIBACTERIAL ACTIVITY OF PLANT BIOSURFACTANT EXTRACT FROM SAPINDUS MUKOROSSI AND IN SILICO EVALUATION OF ITS BIOACTIVITY

    Get PDF
    Objective: Natural biosurfactants can replace synthetic surfactants and find applications in cosmetic products. Saponin extracts from Sapindus mukorossi fruits have emulsifying properties and have traditionally been used in hair care treatments. Their utility can be enhanced by studying their antimicrobial activity against common skin and other microorganisms.Methods: Aqueous biosurfactant extracts were prepared from fruits of S. mukorossi. Concentrated and diluted extracts were tested for antimicrobial activity against Micrococcus luteus, Brevibacterium linens, Bacillus subtilis, Staphylococcus epidermidis, Escherichia coli and Pseudomonas fluorescens by the well diffusion method and measuring the zone of inhibition. In silico biological activity of different saponins present in S. mukorossi was studied using the software Prediction of Activity Spectra for Substances (PASS).Results: Concentrated extracts were most active against all the target microorganisms. Gram positive organisms were inhibited more than Gram negative ones. Diluted extracts produced comparable inhibition zones, suggesting that the extent of dilution does not affect the antimicrobial activity further. In silico evaluation showed that major saponin types (Sapindoside B, Sapinmusaponin A, Sapinmusaponin F and Sapinmusaponin N) had antibacterial activity with probable activity to probable inactivity (Pa>Pi) values less than the threshold level of 0.7.Conclusion: Biosurfactant (saponin) extracts from S. mukorossi, can be included in herbal care products not only for their emulsifying properties, but also for their antimicrobial effect. While in silico study showed less than threshold level of antibacterial activity, the combination of all these saponin types together probably contributed to the synergistic antibacterial activity.Â

    ENDOPHYTES FROM THE AQUATIC PLANT NELUMBO NUCIFERA: DIVERSITY PROFILE AND ACTIVITY CHARACTERIZATION

    Get PDF
    Objective: Endophytes represent a niche habitat for the study of novel bio-and chemo diversity. Nelumbo nucifera is an aquatic plant that has not been characterized for endophyte diversity. This study was undertaken with the objective of isolating endophytes from submerged and aerial part of N. nucifera, study the diversity profile of the isolated endophytes and their antimicrobial, antioxidant, and siderophore production capacity.Methods: Endophytes were isolated from aerial and submerged parts of N. nucifera on different media (Starch Casein Nitrate, Glucose Yeast Extract, Nutrient and Potato Dextrose agar). These were further characterized for morphology (colony characteristics, Gram reaction), physiological characteristics (carbon, nitrogen utilization) and activity (antimicrobial, antioxidant, siderophore production). After dereplication, twelve isolates were studied further.Results: All endophyte isolates were Gram-positive bacteria, and one was a fungus. Isolate L-300 showed the highest antioxidant capacity (238 AAE g FW-1) and L-201 least (10 AAE g FW-1. Antimicrobial activity was exhibited against bacteria and fungal targets, with 50% endophytes active against both bacteria and fungi. Isolates L-003 and L-207 exhibited activity against Gram-negative clinical isolates as also fungi. Siderophore production was shown by 58% isolates with L-208 showing maximum activity.Conclusion: This is the first report on profiling of endophytes from N. nucifera. Results show that aquatic plants harbor diverse microbial population. Many promising isolates (such as L-003, L-211, L-214 and L-300) have been characterized in this study and results obtained of antioxidant, antimicrobial and siderophore production capacity demonstrate further utility in polypharmacological studies for identifying compounds of pharmaceutical and other industrial interest.Â

    PRECIPITATION OF PHENOLS FROM PAPER INDUSTRY WASTEWATER USING FERRIC CHLORIDE

    No full text
    ABSTRACT The removal of phenols from paper industry wastewater by chemical precipitation using ferric chloride was investigated in the present study. The ferric chloride was able to precipitate out phenols as well as coloring matter from the wastewater. The precipitation was found to be highly dependant on both pH and dose of iron salt used. The phenols removal was effective under highly alkaline conditions above pH 10 and the color removal was effective in the pH range of 3.0-6.0. The chemical precipitation performed at pH 12, using ferric chloride dose of 2.5 g/l, was able to reduce 98% of phenols and 80% of color from the paper industry wastewater. The experiments showed the phenols reduction from 79.5 mg/l to a dischargeable level of 2mg/l after treatment with ferric chloride at pH 12. The study claims that the ferric chloride can be used effectively to remove phenols from paper industry wastewater

    Characterization of Yuhushiella sp. TD-032 from the Thar Desert and its antimicrobial activity

    No full text
    During a screening program for antimicrobial compounds from underexplored habitats, a Gram-positive bacterium TD-032, was isolated from arid soil, Thar Desert (India), and analyzed for its morphological, physicochemical, and antimicrobial properties. The 16S ribosomal DNA (rDNA) sequence of the isolate was further studied for the novelty of γ-hyper variable region. TD-032 was grown in large-scale culture, and aqueous and organic solvent extracts analyzed for antimicrobial activity. Culture characteristics showed a lack of diffusible and melanoid pigments. The morphological features were pale yellow aerial mycelium colony color with brownish yellow substrate mycelium and leathery texture. The isolate could grow at 1% concentration of sodium chloride, temperature of 40΀C, and a wide range of pH (7.0-12.0). An evaluation for extracellular enzymatic activities showed secretion of gelatinase(s), cellulase(s), and lipase(s). The γ-hyper variable region of 16S rDNA sequence of TD-032 showed 98.33% relatedness to Yuhushiella deserti, indicating a potential new species. Aqueous and ethyl acetate extracts showed antimicrobial activity against Gram-positive and Gram-negative bacteria inclusive clinical isolates. Inhibition of both test bacteria suggests that TD-032 produces a broad spectrum of antimicrobial substances
    corecore