5 research outputs found

    Synthesis and characterization of micrometer-sized silica aerogel nanoporous beads

    No full text
    Research Article published by Elsevier Volume 81, 15 August 2012Here we report the preparation of micrometer-sized highly nanoporous, relatively trasperant silica aerogel beads with high surface area as well as large pore volume with sizes ranging from 165 to 395 μm. The wet micrometer-sized silica hydrogel beads were prepared through hydrolysis and polycondensation of sodium silicate as a silica precursor. A hydrophobic micro-silica aerogel nanoporous bead was synthesized by simultaneous solvent exchange surface modification process of as synthesized micron sized silica hydrogel bead at an ambient pressure. Hydrophilic micron-sized silica aerogel beads with relatively more textural properties (surface area, pore volume and pore size) with its counterpart were obtained by heating the synthesized hydrophobic micro-silica aerogel beads at 395 °C for an hour. This study demonstrates a robust approach to high porous hydrophobic and hydrophilic micro-silica aerogel beads with a myriad of potential applications in various fileds such as catalysis, biomolecule immobilization, chromatographic separation, and CO2 absorption. This proposed synthesis, which exploits a low-cost silica source (water-glass), is suitable for large-scale industrial production of highly porous hydrophobic and hydrophilic micro-silica aerogel beads at an ambient pressure

    Synthesis of mesoporous silica with superior properties suitable for green tire

    No full text
    Research Article published by Elsevier Volume 18, Issue 5, 25 September 2012In this article we report synthesis of mesoporous silica with superior properties for application in green tire (environmentally friendly tire) as filler. The synthesis was done using a newly innovated apparatus which produce mesoporous silica with superior properties. The desired superior properties are big pore size, optimum BET, large pore volume, uniform properties, and improved performance in real application as tire filler. Mesoporous silica was characterized by BET method and final product with a pore diameter of up to 37 nm was obtained without using surfactants. This is unprecedented step toward synthesis of silica that is suitable for tire industry

    Enhancement of porosity of sodium silicate and titanium oxychloride based TiO2–SiO2 systems synthesized by sol–gel process and their photocatalytic activity

    No full text
    Research Article published by Elsevier Volume 179, 15 September 2013The textural properties of TiO2–SiO2 composites (TSCs) were successively enhanced using three approaches; (1) washing the hydrogels with different solvents, (2) using surfactant and (3) forming the TiO2 sol in ethanol medium. The sol–gel process was exquisitely used to form the composites using cost effective precursors. Initially, the precipitated hydrogels were washed with water or alcohol to evaluate the influence of washing on the dried hydrogels. Consequently, two composites were formed differently in the presence of stearic acid (SA) as a surfactant and the other by forming TiO2 sol in ethanol medium prior to reaction with silica source. The TSC powders were examined by XRD, N2 physisorption studies, FTIR, TGA, SEM, XRF and HRTEM. The BET surface area of the sample obtained after washing the hydrogels with ethanol (TSCE) was the largest (594 m2/g) while porosities of the composites obtained using stearic acid as a surfactant (TSCSA, 0.96 cm3/g) and ethanol as a medium to form the TiO2 sol (TSCES, 1.85 cm3/g) were relatively superior to those obtained under influence of changing washing solvent. Photocatalytic decolorization of methylene blue by the composites calcined at 800 °C revealed that the TSCES-800 possessed the highest activity of all the composites due to its superior properties

    Quantitative recovery of high purity nanoporous silica from waste products of the phosphate fertilizer industry

    No full text
    Research Article published by Elsevier Volume 19, Issue 1, 25 January 2013This study reports on the quantitative recovery of high purity nanoporous silica from wastes material (H2SiF6) of the phosphate fertilizer industry and Na2O·SiO2. The silica recovered from the wastes was compared with silica from the reaction of H2SO4 and Na2O·SiO2 because H2SO4 is commonly used. The product recovered from the wastes material and H2SO4 were 99.3% and 99.1% pure, respectively. The quantity recovered were 22.30 g and 20.11 g, respectively. The product had superior properties suitable for applications such as chromatography, reinforcing material for rubber and plastics. The process may significantly reduce the release of SiF4 gas into the environment
    corecore