2 research outputs found

    Distributed Hierarchical Distribution Control for Very-Large-Scale Clustered Multi-Agent Systems

    Full text link
    As the scale and complexity of multi-agent robotic systems are subject to a continuous increase, this paper considers a class of systems labeled as Very-Large-Scale Multi-Agent Systems (VLMAS) with dimensionality that can scale up to the order of millions of agents. In particular, we consider the problem of steering the state distributions of all agents of a VLMAS to prescribed target distributions while satisfying probabilistic safety guarantees. Based on the key assumption that such systems often admit a multi-level hierarchical clustered structure - where the agents are organized into cliques of different levels - we associate the control of such cliques with the control of distributions, and introduce the Distributed Hierarchical Distribution Control (DHDC) framework. The proposed approach consists of two sub-frameworks. The first one, Distributed Hierarchical Distribution Estimation (DHDE), is a bottom-up hierarchical decentralized algorithm which links the initial and target configurations of the cliques of all levels with suitable Gaussian distributions. The second part, Distributed Hierarchical Distribution Steering (DHDS), is a top-down hierarchical distributed method that steers the distributions of all cliques and agents from the initial to the targets ones assigned by DHDE. Simulation results that scale up to two million agents demonstrate the effectiveness and scalability of the proposed framework. The increased computational efficiency and safety performance of DHDC against related methods is also illustrated. The results of this work indicate the importance of hierarchical distribution control approaches towards achieving safe and scalable solutions for the control of VLMAS. A video with all results is available in https://youtu.be/0QPyR4bD2q0 .Comment: Accepted at Robotics: Science and Systems 202

    Sampling-Based Optimization for Multi-Agent Model Predictive Control

    Full text link
    We systematically review the Variational Optimization, Variational Inference and Stochastic Search perspectives on sampling-based dynamic optimization and discuss their connections to state-of-the-art optimizers and Stochastic Optimal Control (SOC) theory. A general convergence and sample complexity analysis on the three perspectives is provided through the unifying Stochastic Search perspective. We then extend these frameworks to their distributed versions for multi-agent control by combining them with consensus Alternating Direction Method of Multipliers (ADMM) to decouple the full problem into local neighborhood-level ones that can be solved in parallel. Model Predictive Control (MPC) algorithms are then developed based on these frameworks, leading to fully decentralized sampling-based dynamic optimizers. The capabilities of the proposed algorithms framework are demonstrated on multiple complex multi-agent tasks for vehicle and quadcopter systems in simulation. The results compare different distributed sampling-based optimizers and their centralized counterparts using unimodal Gaussian, mixture of Gaussians, and stein variational policies. The scalability of the proposed distributed algorithms is demonstrated on a 196-vehicle scenario where a direct application of centralized sampling-based methods is shown to be prohibitive
    corecore