3 research outputs found
Impacts of low-head hydropower plants on cyprinid-dominated fish assemblages in Lithuanian rivers
The meso-scale habitat simulation model MesoHABSIM was applied in three Lithuanian lowland rivers to study the effect of low-head hydropower plants (HPPs) on the fish habitats. Stream flow time series on a daily scale for the period 1970–2015 were used to describe flow regime downstream of HPPs for periods before and after their installation. Conditional habitat suitability criteria were developed for 4 species of cyprinid fish, schneider (Alburnoides bipunctatus), dace (Leuciscus leuciscus), roach (Rutilus rutilus) and vimba (Vimba vimba) to simulate their available habitat at different water discharges. Modelling results showed that HPPs have a significant impact on habitat availability in the low flow period in dry years below HPPs due to insufficient released flow. The environmental flow, as prescribed by the Lithuanian national law, is estimated between 80 and 95% exceedance probability of the mean minimum discharge of 30 days. This flow leads to a significant reduction in frequency and duration of available suitable habitats for vimba and schneider during low flow period. The roach habitat is the least affected. The results of habitat modelling are in line with the actual data on the occurrence and relative abundance of considered fish species in the studied river stretches. A general comparison of the relative abundance of modelled fish species in 42 natural river stretches and 20 stretches below the HPPs also showed that the relative abundance of roach is significantly higher, and that of schneider is significantly lower in river sections below the HPPs than the abundance in natural river sections. All results indicate that the current environmental flow does not secure survival of certain fish species. The applicability of the average low flow release during summer could be a plausible alternative to the current environmental flow in order to maintain ecosystem health and services
The combined impact of hydropower plants and climate change on river runoff and fish habitats in lowland watersheds
Aquatic ecosystems are particularly vulnerable to anthropogenic activity and climate change. The changes in flow regimes in Lithuanian lowland rivers due to the operation of hydropower plants (HPPs) and the impact of altered flow on some fish species have already been studied. The impact of climate change on future natural river runoff and the structure of fish assemblages was also investigated. However, it is still unknown how the combined effect of climate change and flow regulation related to hydropower generation may affect fish assemblages in the downstream river reaches below the Lithuanian HPPs. In this study, the physical habitat modelling system MesoHABSIM was used to simulate spatial and temporal changes in aquatic habitats availability for different fish species under the influence of HPP at different climate change scenarios. Changes in the available habitat were assessed for common fish species in four HPP-affected rivers representing different hydrological regions of Lithuania. The modelling results showed that the operation of HPP under climate change conditions in most rivers could be beneficial for small benthic fish species such as gudgeon Gobio gobio and stone loach Barbatula barbatula. Meanwhile, for larger fish species (e.g., chub Squalius cephalus and vimba Vimba vimba) the alteration in the temporal availability of suitable habitat was relatively higher
Influence of climate change on the ice conditions of the Curonian Lagoon
The Curonian Lagoon is a shallow freshwater lagoon of significant environmental value in the south-eastern part of the Baltic Sea. The objective of the study was to evaluate changes of ice indices (duration, thickness and breakup dates) of this lagoon and to assess their possible tendencies in the 21st century. A methodology was developed combining the assessment of past changes (1960–2017) of ice indices and their projections in the near (2021–2040) and far (2081–2100) future periods using a hydrometeorological database, statistical methods and regression analysis as well as regional climate models and RCP scenarios. Climate change has a considerable impact on ice conditions in the Curonian Lagoon. During the historical period of 1960–2017, the Curonian Lagoon was covered with ice for 72 days a year, ice thickness reached 23 cm, whereas ice breakup was observed in the middle of March on average. According to the different scenarios, in the near and far future periods, ice duration will last 35–45 and 3–34 days, respectively. Ice thickness is projected to be 13–15 cm in the near future, whereas, at the end of the century, it is expected to decline to 0–13 cm. In the past, the lagoon ice cover remained until the middle of the third decade of February. At the end of the 21st century, RCP8.5 scenario projects the most drastic shifts: the permanent ice cover might be absent, whereas short-term ice cover is expected to melt already in the beginning of January