1,202 research outputs found

    A possible role for miRNA silencing in disease phenotype variation in Swedish transthyretin V30M carriers

    Get PDF
    Our results are the first to show the presence of a 3'UTR polymorphism on the V30M haplotype in Swedish carriers, which can serve as a miRNA binding site potentially leading to down-regulated expression from the mutated TTR allele. This finding may be related to the low penetrance and high age at onset of the disease observed in the Swedish patient population

    Unexpectedly long incubation period of Plasmodium vivax malaria, in the absence of chemoprophylaxis, in patients diagnosed outside the transmission area in Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2010, Brazil recorded 3343,599 cases of malaria, with 99.6% of them concentrated in the Amazon region. <it>Plasmodium vivax </it>accounts for 86% of the cases circulating in the country. The extra-Amazonian region, where transmission does not occur, recorded about 566 cases imported from the Amazonian area in Brazil and South America, from Central America, Asia and African countries. Prolonged incubation periods have been described for <it>P. vivax </it>malaria in temperate climates. The diversity in essential biological characteristics is traditionally considered as one possible explanation to the emergence of relapse in malaria and to the differences in the duration of the incubation period, which can also be explained by the use of chemoprophylaxis. Studying the reported cases of <it>P. vivax </it>malaria in Rio de Janeiro, where there is no vector transmission, has made it possible to evaluate the extension of the incubation period and to notice that it may be extended in some cases.</p> <p>Methods</p> <p>Descriptive study of every malaria patients who visited the clinic in the last five years. The mean, standard deviation, median, minimum and maximum of all incubation periods were analysed.</p> <p>Results</p> <p>From the total of 80 patients seen in the clinic during the study time, with confirmed diagnosis of malaria, 49 (63%) were infected with <it>P. vivax</it>. Between those, seven had an estimated incubation period varying from three to 12 months and were returned travellers from Brazilian Amazonian states (6) and Indonesia (1). None of them had taken malarial chemoprophylaxis.</p> <p>Conclusions</p> <p>The authors emphasize that considering malaria as a possible cause of febrile syndrome should be a post-travel routine, independent of the time elapsed after exposure in the transmission area, even in the absence of malaria chemoprophylaxis. They speculate that, since there is no current and detailed information about the biological cycle of human malaria plasmodia's in Brazil, it is possible that new strains are circulating in endemic regions or a change in cycle of preexisting strains is occurring. Considering that a prolonged incubation period may confer advantages on the survival of the parasite, difficulties in malaria control might arise.</p

    A Method for the Generation of Ectromelia Virus (ECTV) Recombinants: In Vivo Analysis of ECTV vCD30 Deletion Mutants

    Get PDF
    Ectromelia virus (ECTV) is the causative agent of mousepox, a lethal disease of mice with similarities to human smallpox. Mousepox progression involves replication at the initial site of infection, usually the skin, followed by a rapid spread to the secondary replicative organs, spleen and liver, and finally a dissemination to the skin, where the typical rash associated with this and other orthopoxviral induced diseases appears. Case fatality rate is genetically determined and reaches up to 100% in susceptible mice strains. Like other poxviruses, ECTV encodes a number of proteins with immunomodulatory potential, whose role in mousepox progression remains largely undescribed. Amongst these is a secreted homologue of the cellular tumour necrosis factor receptor superfamily member CD30 which has been proposed to modulate a Th1 immune response in vivo

    Dynamics of Macrophage Trogocytosis of Rituximab-Coated B Cells

    Get PDF
    Macrophages can remove antigen from the surface of antibody-coated cells by a process termed trogocytosis. Using live cell microscopy and flow cytometry, we investigated the dynamics of trogocytosis by RAW264.7 macrophages of Ramos B cells opsonized with the anti-CD20 monoclonal antibody rituximab. Spontaneous and reversible formation of uropods was observed on Ramos cells, and these showed a strong enrichment in rituximab binding. RAW-Ramos conjugate interfaces were highly enriched in rituximab, and transfer of rituximab to the RAW cells in submicron-sized puncta occurred shortly after cell contact. Membrane from the target cells was concomitantly transferred along with rituximab to a variable extent. We established a flow cytometry-based approach to follow the kinetics of transfer and internalization of rituximab. Disruption of actin polymerization nearly eliminated transfer, while blocking phosphatidylinositol 3-kinase activity only resulted in a delay in its acquisition. Inhibition of Src family kinase activity both slowed acquisition and reduced the extent of trogocytosis. The effects of inhibiting these kinases are likely due to their role in efficient formation of cell-cell conjugates. Selective pre-treatment of Ramos cells with phenylarsine oxide blocked uropod formation, reduced enrichment of rituximab at cell-cell interfaces, and reduced the efficiency of trogocytic transfer of rituximab. Our findings highlight that dynamic changes in target cell shape and surface distribution of antigen may significantly influence the progression and extent of trogocytosis. Understanding the mechanistic determinants of macrophage trogocytosis will be important for optimal design of antibody therapies

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Endothelin Receptor A Antagonism Attenuates Renal Medullary Blood Flow Impairment in Endotoxemic Pigs

    Get PDF
    BACKGROUND: Endothelin-1 is a potent endogenous vasoconstrictor that contributes to renal microcirculatory impairment during endotoxemia and sepsis. Here we investigated if the renal circulatory and metabolic effects of endothelin during endotoxemia are mediated through activation of endothelin-A receptors. METHODS AND FINDINGS: A randomized experimental study was performed with anesthetized and mechanically ventilated pigs subjected to Escherichia coli endotoxin infusion for five hours. After two hours the animals were treated with the selective endothelin receptor type A antagonist TBC 3711 (2 mg⋅kg(-1), n = 8) or served as endotoxin-treated controls (n = 8). Renal artery blood flow, diuresis and creatinine clearance decreased in response to endotoxemia. Perfusion in the cortex, as measured by laser doppler flowmetry, was reduced in both groups, but TBC 3711 attenuated the decrease in the medulla (p = 0.002). Compared to control, TBC 3711 reduced renal oxygen extraction as well as cortical and medullary lactate/pyruvate ratios (p<0.05) measured by microdialysis. Furthermore, TBC 3711 attenuated the decline in renal cortical interstitial glucose levels (p = 0.02) and increased medullary pyruvate levels (p = 0.03). Decreased creatinine clearance and oliguria were present in both groups without any significant difference. CONCLUSIONS: These results suggest that endothelin released during endotoxemia acts via endothelin A receptors to impair renal medullary blood flow causing ischemia. Reduced renal oxygen extraction and cortical levels of lactate by TBC 3711, without effects on cortical blood flow, further suggest additional metabolic effects of endothelin type A receptor activation in this model of endotoxin induced acute kidney injury

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore