60 research outputs found
Dependence of Domain Wall Structure for Low Field Injection into Magnetic Nanowires
Micromagnetic simulation is used to model the injection of a domain wall into a magnetic nanowire with field strengths less than the so-called Walker field. This ensures fast, reliable motion of the wall. When the wire is located at the edge of a small injecting disk, a bias field used to control the orientation of the domain wall can reduce the pinning potential of the structure. The low field injection is explained by a simple model, which relies on the topological nature of a domain wall. The technique can quickly inject multiple domain walls with a known magnetic structure
Enhancing Domain Wall Speed in Nanowires with Transverse Magnetic Fields
Dynamic micromagnetic simulation studies have been completed to observe the motion of a domain wall in a magnetic nanowire in an effort to increase the field-driven domain wall speed. Previous studies have shown that the wire dimensions place a cap on the maximum speed attainable by a domain wall when driven by a magnetic field placed along the direction of the nanowire. Here we present data showing a significant increase in the maximum speed of a domain wall due to the addition of a magnetic field placed perpendicular to the longitudinal driving field. The results are expressed in terms of the relative alignment of the transverse field direction with respect to the direction of the magnetic moments within the domain wall. In particular, when the transverse field is parallel to the magnetic moments within the domain wall, the velocity of the wall varies linearly with the strength of the transverse field increasing by up to 20%. Further examination of the domain wall structure shows that the length of the domain wall also depends linearly on the strength of the transverse field. We present a simple model to correlate the effects
Fast domain wall motion in nanostripes with out-of-plane fields
Controlling domain wall motion is important due to the impact on the
viability of proposed nanowire devices. One hurdle is slow domain wall speed
when driven by fields greater than the Walker field, due to nucleation of
vortices in the wall. We present simulation results detailing the dynamics of
these vortices; including the nucleation and subsequent fast ejection of the
vortex core leading to fast domain wall speeds. The ejection is due to the
reversal of the core moments by an out-of-plane field. The technique can be
used to produce domain walls of known orientation independent of the initial
state.Comment: 12 pages (3 figures
Enhancing Domain Wall Speed in Nanowires with Transverse Magnetic Fields
Dynamic micromagnetic simulation studies have been completed to observe the
motion of a domain wall in a magnetic nanowire in an effort to increase the
field-driven domain wall speed. Previous studies have shown that the wire
dimensions place a cap on the maximum speed attainable by a domain wall when
driven by a magnetic field placed along the direction of the nanowire. Here we
present data showing a significant increase in the maximum speed of a domain
wall due to the addition of a magnetic field placed perpendicular to the
longitudinal driving field. The results are expressed in terms of the relative
alignment of the transverse field direction with respect to the direction of
the magnetic moments within the domain wall. In particular, when the transverse
field is parallel to the magnetic moments within the domain wall, the velocity
of the wall varies linearly with the strength of the transverse field
increasing by up to 20%. Further examination of the domain wall structure shows
that the length of the domain wall also depends linearly on the strength of the
transverse field. We present a simple model to correlate the effects.Comment: 11 pages, accepted by J. Appl. Phy
Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires
Domain walls in ferromagnetic nanowires are important for proposed devices in recording, logic, and sensing. The realization of such devices depends in part on the ability to quickly and accurately control the domain wall from creation until placement. Using micromagnetic computer simulation we demonstrate how a combination of externally applied magnetic fields is used to quickly inject, move, and accurately place multiple domain walls within a single wire for potential recording and logical operations. The use of a magnetic field component applied perpendicular to the principle domain wall driving field is found to be critical for increased speed and reliability. The effects of the transverse field on the injection and trapping of the domain wall will be shown to be of particular importance
Controlling Individual Domain Walls in Ferromagnetic Nanowires for Memory and Sensor Applications
Controlled motion of 180o and 360o domain walls along planar nanowires is presented. Standard Landau – Lifshitz micromagnetic modeling has been used to simulate the response of the domain walls to the application of an external magnetic field. A 180o wall is quickly and easily moved with the application of an applied. field along the axis of the wire but a 360odomain wall is stationary in the same case. An oscillatory applied field can be used to continually move the wall along the wires axis. The speed at which the 360o domain wall is found to be several times slower than a similar 180o domain wall and is limited by interaction between the magnetization of the domain wall and the external field
Building the Perfect Parasite: Cell Division in Apicomplexa
Apicomplexans are pathogens responsible for malaria, toxoplasmosis, and crytposporidiosis in humans, and a wide range of livestock diseases. These unicellular eukaryotes are stealthy invaders, sheltering from the immune response in the cells of their hosts, while at the same time tapping into these cells as source of nutrients. The complexity and beauty of the structures formed during their intracellular development have made apicomplexans the darling of electron microscopists. Dramatic technological progress over the last decade has transformed apicomplexans into respectable genetic model organisms. Extensive genomic resources are now available for many apicomplexan species. At the same time, parasite transfection has enabled researchers to test the function of specific genes through reverse and forward genetic approaches with increasing sophistication. Transfection also introduced the use of fluorescent reporters, opening the field to dynamic real time microscopic observation. Parasite cell biologists have used these tools to take a fresh look at a classic problem: how do apicomplexans build the perfect invasion machine, the zoite, and how is this process fine-tuned to fit the specific niche of each pathogen in this ancient and very diverse group? This work has unearthed a treasure trove of novel structures and mechanisms that are the focus of this review
A Pilot Study of the Effects of Mindfulness-Based Stress Reduction on Post-traumatic Stress Disorder Symptoms and Brain Response to Traumatic Reminders of Combat in Operation Enduring Freedom/Operation Iraqi Freedom Combat Veterans with Post-traumatic Stress Disorder
OBJECTIVE: Brain imaging studies in patients with post-traumatic stress disorder (PTSD) have implicated a circuitry of brain regions including the medial prefrontal cortex, amygdala, hippocampus, parietal cortex, and insula. Pharmacological treatment studies have shown a reversal of medial prefrontal deficits in response to traumatic reminders. Mindfulness-based stress reduction (MBSR) is a promising non-pharmacologic approach to the treatment of anxiety and pain disorders. The purpose of this study was to assess the effects of MBSR on PTSD symptoms and brain response to traumatic reminders measured with positron-emission tomography (PET) in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) combat veterans with PTSD. We hypothesized that MBSR would show increased prefrontal response to stress and improved PTSD symptoms in veterans with PTSD.
METHOD: Twenty-six OEF/OIF combat veterans with PTSD who had recently returned from a combat zone were block randomized to receive eight sessions of MBSR or present-centered group therapy (PCGT). PTSD patients underwent assessment of PTSD symptoms with the Clinician-Administered PTSD Scale (CAPS), mindfulness with the Five Factor Mindfulness Questionnaire (FFMQ) and brain imaging using PET in conjunction with exposure to neutral and Iraq combat-related slides and sound before and after treatment. Nine patients in the MBSR group and 8 in the PCGT group completed all study procedures.
RESULTS: Post-traumatic stress disorder patients treated with MBSR (but not PCGT) had an improvement in PTSD symptoms measured with the CAPS that persisted for 6 months after treatment. MBSR also resulted in an increase in mindfulness measured with the FFMQ. MBSR-treated patients had increased anterior cingulate and inferior parietal lobule and decreased insula and precuneus function in response to traumatic reminders compared to the PCGT group.
CONCLUSION: This study shows that MBSR is a safe and effective treatment for PTSD. Furthermore, MBSR treatment is associated with changes in brain regions that have been implicated in PTSD and are involved in extinction of fear responses to traumatic memories as well as regulation of the stress response
The Macronuclear Genome of \u3cem\u3eStentor coeruleus\u3c/em\u3e Reveals Tiny Introns in a Giant Cell
The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities—if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3]. These biologists were also drawn to Stentor because it exhibits a rich repertoire of behaviors, including light avoidance, mechanosensitive contraction, food selection, and even the ability to habituate to touch, a simple form of learning usually seen in higher organisms [4]. While early microsurgical approaches demonstrated a startling array of regenerative and morphogenetic processes in this single-celled organism, Stentor was never developed as a molecular model system. We report the sequencing of the Stentor coeruleus macronuclear genome and reveal key features of the genome. First, we find that Stentor uses the standard genetic code, suggesting that ciliate-specific genetic codes arose after Stentor branched from other ciliates. We also discover that ploidy correlates with Stentor’s cell size. Finally, in the Stentor genome, we discover the smallest spliceosomal introns reported for any species. The sequenced genome opens the door to molecular analysis of single-cell regeneration in Stentor
A Chromatic Treatment of Linear Polarization in the Solar Corona at the 2023 Total Solar Eclipse
The broadband solar K-corona is linearly polarized due to Thomson scattering.
Various strategies have been used to represent coronal polarization. Here, we
present a new way to visualize the polarized corona, using observations from
the 2023 April 20 total solar eclipse in Australia in support of the Citizen
CATE 2024 project. We convert observations in the common four-polarizer
orthogonal basis (0{\deg}, 45{\deg}, 90{\deg}, & 135{\deg}) to -60{\deg},
0{\deg}, and +60{\deg} (MZP) polarization, which is homologous to R, G, B color
channels. The unique image generated provides some sense of how humans might
visualize polarization if we could perceive it in the same way we perceive
color.Comment: 4 pages, 1 figure; accepted for publication in Research Notes of the
American Astronomical Society (RNAAS
- …