862 research outputs found
Hairdressing in groups: a survey of combings and formal languages
A group is combable if it can be represented by a language of words
satisfying a fellow traveller property; an automatic group has a synchronous
combing which is a regular language. This article surveys results for combable
groups, in particular in the case where the combing is a formal language.Comment: 17 pages. Published copy, also available at
http://www.maths.warwick.ac.uk/gt/GTMon1/paper24.abs.htm
A language theoretic analysis of combings
A group is combable if it can be represented by a language of words
satisfying a fellow traveller property; an automatic group has a synchronous
combing which is a regular language. This paper gives a systematic analysis of
the properties of groups with combings in various formal language classes, and
of the closure properties of the associated classes of groups. It generalises
previous work, in particular of Epstein et al. and Bridson and Gilman.Comment: DVI and Post-Script files only, 21 pages. Submitted to International
Journal of Algebra and Computatio
Solving the word problem in real time
The paper is devoted to the study of groups whose word problem can be solved by a Turing machine which operates in real time. A recent result of the first author for word hyperbolic groups is extended to prove that under certain conditions the generalised Dehn algorithms of Cannon, Goodman and Shapiro, which clearly run in linear time, can be programmed on real-time Turing machines. It follows that word-hyperbolic groups, finitely generated nilpotent groups and geometrically finite hyperbolic groups all have real-time word problems
- …