874 research outputs found

    Age-Related Interactions with Wind During Migration Support the Hypothesis of Developmental Learning in a Migrating Long-Lived Seabird

    Get PDF
    Wind patterns shape migratory pathways and detours of many procellariiform bird species that seasonally migrate between hemispheres. These seabirds are long-lived, and the period of immaturity is presumed to be a time of development and learning the environment, specifically how to use wind to their advantage. We assess how wind encountered by individual Great Shearwaters (Ardenna gravis) varies along the migration journey and compare responses between presumed mature and immature birds (early and late, respectively) in southbound migration and mature birds in northbound migration. We analyze modeled Argos locations from 71 individual tracks of migratory Great Shearwaters with concurrent U (East/West) and V (North/South) wind components. Migration in seabirds is well studied, but there is limited quantitative work measuring individual birds directly interacting with wind and their associated changes in flight behavior during migration. We show that Great Shearwaters made optimal use of winds, and that different age groups made decisions that exposed them to different wind constraints. Overall, Great Shearwaters derived positive responses from wind under most conditions and did not rely on a drifting strategy, which would be suggested if wind effect (difference between ground and airspeed) was predominantly positive during migrations. Instead, they appeared to use a compensating strategy to achieve an acceptable course and speed. The difference we observed in migration phenologies suggests that by migrating later, immature birds might travel the path of least resistance and experience flight conditions that are less risky furthering their ability to withstand a variety of wind conditions encountered later in life as done by adults, which migrate earlier and are subject to more variable flight conditions. We conclude that like other procellariiforms, a longer period of sexual maturity is required to enhance flight performance and mediate energy expenditure through experiential learning and increased fitness

    Star-Forming, Rotating Spheroidal Galaxies in the GAMA and SAMI Surveys

    Get PDF
    The Galaxy And Mass Assembly (GAMA) survey has morphologically identified a class of ‘Little Blue Spheroid’ (LBS) galaxies whose relationship to other classes of galaxies we now examine in detail. Considering a sample of 868 LBSs, we find that such galaxies display similar but not identical colours, specific star formation rates, stellar population ages, mass-to-light ratios, and metallicities to Sd-Irr galaxies. We also find that LBSs typically occupy environments of even lower density than those of Sd-Irr galaxies, where ∼65 per cent of LBS galaxies live in isolation. Using deep, high-resolution imaging from VST KiDS and the new Bayesian, 2D galaxy profile modelling code PROFIT, we further examine the detailed structure of LBSs and find that their Sérsic indices, sizes, and axial ratios are compatible with those of low-mass elliptical galaxies. We then examine SAMI Galaxy survey integral field emission line kinematics for a subset of 62 LBSs and find that the majority (42) of these galaxies display ordered rotation with the remainder displaying disturbed/non-ordered dynamics. Finally, we consider potential evolutionary scenarios for a population with this unusual combination of properties, concluding that LBSs are likely formed by a mixture of merger and accretion processes still recently active in low-redshift dwarf populations. We also infer that if LBS-like galaxies were subjected to quenching in a rich environment, they would plausibly resemble cluster dwarf ellipticals

    Neuroimaging, clinical and life course correlates of normal-appearing white matter integrity in 70-year-olds

    Get PDF
    We investigate associations between normal-appearing white matter (NAWM) microstructural integrity in cognitively normal ∼70-year-olds and concurrently measured brain health and cognition, demographics, genetics and life course cardiovascular health. Participants born in the same week in March 1946 (British 1946 Birth cohort) underwent PET-MRI around age 70. Mean standardized NAWM integrity metrics (fractional anisotropy (FA), mean diffusivity (MD), neurite density index (NDI) and orientation dispersion index (ODI)) were derived from diffusion MRI. Linear regression was used to test associations between NAWM metrics and (1) concurrent measures, including whole brain volume, white matter hyperintensity volume (WMHV), PET amyloid and cognition; (2) the influence of demographic and genetic predictors, including sex, childhood cognition, education, socioeconomic position, and genetic risk for Alzheimer’s Disease (APOE-ε4); (3) systolic and diastolic blood pressure and cardiovascular health (FHS-CVS) across adulthood. Sex interactions were tested. Statistical significance included false discovery rate correction (5%). 362 participants met inclusion criteria (mean age 70 years, 49% female). Higher WMHV was associated with lower FA (b=-0.09 [95%CI:-0.11, -0.06] p<0.01), NDI (b=-0.17 [-0.22, -0.12] p<0.01), and higher MD (b=0.14 [-0.10, -0.17] p<0.01); amyloid (in men) was associated with lower FA (b=-0.04 [-0.08, -0.01] p=0.03) and higher MD (b=0.06 [0.01,0.11] p=0.02). FHS-CVS in later-life (age 69) was associated with NAWM [lower FA (b=-0.06 [-0.09, -0.02] p<0.01), NDI (b=-0.10 [-0.17, -0.03] p<0.01), and higher MD (b=0.09 [0.04,0.14] p<0.01). Significant sex interactions (p<0.05) emerged for midlife cardiovascular health (age 53) and NAWM at 70: marginal effect plots demonstrated, in women only, NAWM was associated with higher midlife FHS-CVS (lower FA and NDI), midlife systolic (lower FA, NDI, and higher MD), and diastolic (lower FA and NDI) blood pressure, and greater blood pressure change between 43 and 53 years (lower FA and NDI), independently of WMHV. In summary, poorer NAWM microstructural integrity in ∼70-year-olds was associated with measures of cerebral small vessel disease, amyloid (in males) and later-life cardiovascular health, demonstrating how NAWM can provide additional information to overt white matter disease. Our findings further show that greater midlife cardiovascular risk and higher blood pressure were associated with poorer NAWM microstructural integrity in females only, suggesting that women’s brains may be more susceptible to the effects of midlife blood pressure and cardiovascular health

    Telomeric expression sites are highly conserved in trypanosoma brucei

    Get PDF
    Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Neoadjuvant Relatlimab and Nivolumab in Resectable Melanoma

    Get PDF
    Relatlimab and nivolumab combination immunotherapy improves progression-free survival over nivolumab monotherapy in patients with unresectable advanced melanoma1. We investigated this regimen in patients with resectable clinical stage III or oligometastatic stage IV melanoma (NCT02519322). Patients received two neoadjuvant doses (nivolumab 480 mg and relatlimab 160 mg intravenously every 4 weeks) followed by surgery, and then ten doses of adjuvant combination therapy. The primary end point was pathologic complete response (pCR) rate2. The combination resulted in 57% pCR rate and 70% overall pathologic response rate among 30 patients treated. The radiographic response rate using Response Evaluation Criteria in Solid Tumors 1.1 was 57%. No grade 3-4 immune-related adverse events were observed in the neoadjuvant setting. The 1- and 2-year recurrence-free survival rate was 100% and 92% for patients with any pathologic response, compared to 88% and 55% for patients who did not have a pathologic response (P = 0.005). Increased immune cell infiltration at baseline, and decrease in M2 macrophages during treatment, were associated with pathologic response. Our results indicate that neoadjuvant relatlimab and nivolumab induces a high pCR rate. Safety during neoadjuvant therapy is favourable compared to other combination immunotherapy regimens. These data, in combination with the results of the RELATIVITY-047 trial1, provide further confirmation of the efficacy and safety of this new immunotherapy regimen

    Neoadjuvant Checkpoint Inhibitor Immunotherapy for Resectable Mucosal Melanoma

    Get PDF
    BACKGROUND: Neoadjuvant checkpoint inhibition (CPI) has recently demonstrated impressive outcomes in patients with stage 3 cutaneous melanoma. However, the safety, efficacy, and outcome of neoadjuvant CPI in patients with mucosal melanoma (MM) are not well studied as MM is a rare melanoma subtype. CPI such as combination nivolumab and ipilimumab achieves response rates of 37-43% in unresectable or metastatic MM but there is limited data regarding the efficacy of these agents in the preoperative setting. We hypothesize that neoadjuvant CPI is a safe and feasible approach for patients with resectable MM. METHOD: Under an institutionally approved protocol, we identified adult MM patients with resectable disease who received neoadjuvant anti-PD1 +/- anti-CTLA4 between 2015 to 2019 at our institution. Clinical information include age, gender, presence of nodal involvement or satellitosis, functional status, pre-treatment LDH, tumor mutation status, and treatment data was collected. Outcomes include event free survival (EFS), overall survival (OS), objective response rate (ORR), pathologic response rate (PRR), and grade ≥3 toxicities. RESULTS: We identified 36 patients. Median age was 62; 58% were female. Seventy-eight percent of patients received anti-PD1 + anti-CTLA4. Node positive disease or satellite lesions was present at the time of treatment initiation in 47% of patients. Primary sites of disease were anorectal (53%), urogenital (25%), head and neck (17%), and esophageal (6%). A minority of patients did not undergo surgery due to complete response (n=3, 8%) and disease progression (n=6, 17%), respectively. With a median follow up of 37.9 months, the median EFS was 9.2 months with 3-year EFS rate of 29%. Median OS had not been reached and 3-year OS rate was 55%. ORR was 47% and PRR was 35%. EFS was significantly higher for patients with objective response and for patients with pathologic response. OS was significantly higher for patients with pathologic response. Grade 3 toxicities were reported in 39% of patients. CONCLUSION: Neoadjuvant CPI for resectable MM is a feasible approach with signs of efficacy and an acceptable safety profile. As there is currently no standard approach for resectable MM, this study supports further investigations using neoadjuvant therapy for these patients

    Diagnosis of Partial Body Radiation Exposure in Mice Using Peripheral Blood Gene Expression Profiles

    Get PDF
    In the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB) can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI). However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79–100%) compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16–43%), suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Inherent Interfacial Mechanical Gradients in 3D Hydrogels Influence Tumor Cell Behaviors

    Get PDF
    Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel was supported on a rigid glass substrate, an interface which computational techniques revealed to yield relative stiffening close to the rigid substrate support. To explore the influence of these gradients in 3D, hydrogels of varying Matrigel content were synthesized and the morphology, spreading, actin organization, and migration of glioblastoma multiforme (GBM) tumor cells were examined at the lowest (<50 µm) and highest (>500 µm) gel positions. GBMs adopted bipolar morphologies, displayed actin stress fiber formation, and evidenced fast, mesenchymal migration close to the substrate, whereas away from the interface, they adopted more rounded or ellipsoid morphologies, displayed poor actin architecture, and evidenced slow migration with some amoeboid characteristics. Mechanical gradients produced via edge effects could be observed with other hydrogels and substrates and permit observation of responses to multiple mechanical environments in a single hydrogel. Thus, hydrogel-support edge effects could be used to explore mechanosensitivity in a single 3D hydrogel system and should be considered in 3D hydrogel cell culture systems
    corecore