21 research outputs found
Generation and engineering of ABD-derived affinity proteins for clinical applications
Proteins that specifically recognize and bind to other molecules or structures are important tools in industrial and medical applications. Binding proteins engineered from small stable scaffold proteins have been utilized for several purposes due to their favorable biophysical properties, tolerance to mutagenesis, efficient tissue penetration and ease of production. The 46 amino acid long albumin-binding domain (ABD) derived from the bacterial receptor Protein G is a promising scaffold that has been explored in this thesis. The scaffold was subjected to combinatorial protein engineering for generation of ABD-derived binding proteins with novel specificities. Furthermore, the medical potential of engineered ABD- derived affinity proteins (ADAPTs) was evaluated in a series of pre-clinical studies. In the first studies, ADAPTs suitability as tracers for radionuclide molecular imaging was evaluated. Factors influencing biodistribution and tumor targeting properties were assessed in mice models bearing HER2 positive xenografts. All tested ADAPT constructs demonstrated high and specific targeting of HER2-expressing tumor cells as well as fast clearance from circulation. The results also showed that the size and character of the N- terminus affected the biodistribution profile of ADAPTs. Moreover, the targeting properties of ADAPTs proved to be highly influenced by the residualizing properties of the attached radionuclide label. Taken together, the results provided the first evidence that tumor imaging can be performed using ADAPTs and the favorable pharmacokinetic profiles in the studied mice models suggest that the scaffold is a promising candidate for clinical applications. In the last study, a platform for generation of stable ABD-derived affinity proteins with novel binding specificities was established using a multi-step approach combining directed evolution and rational protein design. A broad combinatorial protein library with 20 randomized positions in ABD was designed and binders against three distinct targets were selected using phage display. Characterization of the selected binders provided information regarding optimal positions to randomize in a final library. In addition, the isolated binders were subjected to mutagenesis in certain surface exposed positions and mutations that provided increased stability were introduced into the original scaffold. Finally, a more focused combinatorial protein library consisting of 11 randomized positions was designed and constructed. The library was validated by selections against the same set of targets as for the first, broad library. The isolation of highly stable affinity ligands confirms that the library can be used for generation of diverse and stable affinity molecules.QC 20180315</p
Generation and engineering of ABD-derived affinity proteins for clinical applications
Proteins that specifically recognize and bind to other molecules or structures are important tools in industrial and medical applications. Binding proteins engineered from small stable scaffold proteins have been utilized for several purposes due to their favorable biophysical properties, tolerance to mutagenesis, efficient tissue penetration and ease of production. The 46 amino acid long albumin-binding domain (ABD) derived from the bacterial receptor Protein G is a promising scaffold that has been explored in this thesis. The scaffold was subjected to combinatorial protein engineering for generation of ABD-derived binding proteins with novel specificities. Furthermore, the medical potential of engineered ABD- derived affinity proteins (ADAPTs) was evaluated in a series of pre-clinical studies. In the first studies, ADAPTs suitability as tracers for radionuclide molecular imaging was evaluated. Factors influencing biodistribution and tumor targeting properties were assessed in mice models bearing HER2 positive xenografts. All tested ADAPT constructs demonstrated high and specific targeting of HER2-expressing tumor cells as well as fast clearance from circulation. The results also showed that the size and character of the N- terminus affected the biodistribution profile of ADAPTs. Moreover, the targeting properties of ADAPTs proved to be highly influenced by the residualizing properties of the attached radionuclide label. Taken together, the results provided the first evidence that tumor imaging can be performed using ADAPTs and the favorable pharmacokinetic profiles in the studied mice models suggest that the scaffold is a promising candidate for clinical applications. In the last study, a platform for generation of stable ABD-derived affinity proteins with novel binding specificities was established using a multi-step approach combining directed evolution and rational protein design. A broad combinatorial protein library with 20 randomized positions in ABD was designed and binders against three distinct targets were selected using phage display. Characterization of the selected binders provided information regarding optimal positions to randomize in a final library. In addition, the isolated binders were subjected to mutagenesis in certain surface exposed positions and mutations that provided increased stability were introduced into the original scaffold. Finally, a more focused combinatorial protein library consisting of 11 randomized positions was designed and constructed. The library was validated by selections against the same set of targets as for the first, broad library. The isolation of highly stable affinity ligands confirms that the library can be used for generation of diverse and stable affinity molecules.QC 20180315</p
Generation and engineering of ABD-derived affinity proteins for clinical applications
Proteins that specifically recognize and bind to other molecules or structures are important tools in industrial and medical applications. Binding proteins engineered from small stable scaffold proteins have been utilized for several purposes due to their favorable biophysical properties, tolerance to mutagenesis, efficient tissue penetration and ease of production. The 46 amino acid long albumin-binding domain (ABD) derived from the bacterial receptor Protein G is a promising scaffold that has been explored in this thesis. The scaffold was subjected to combinatorial protein engineering for generation of ABD-derived binding proteins with novel specificities. Furthermore, the medical potential of engineered ABD- derived affinity proteins (ADAPTs) was evaluated in a series of pre-clinical studies. In the first studies, ADAPTs suitability as tracers for radionuclide molecular imaging was evaluated. Factors influencing biodistribution and tumor targeting properties were assessed in mice models bearing HER2 positive xenografts. All tested ADAPT constructs demonstrated high and specific targeting of HER2-expressing tumor cells as well as fast clearance from circulation. The results also showed that the size and character of the N- terminus affected the biodistribution profile of ADAPTs. Moreover, the targeting properties of ADAPTs proved to be highly influenced by the residualizing properties of the attached radionuclide label. Taken together, the results provided the first evidence that tumor imaging can be performed using ADAPTs and the favorable pharmacokinetic profiles in the studied mice models suggest that the scaffold is a promising candidate for clinical applications. In the last study, a platform for generation of stable ABD-derived affinity proteins with novel binding specificities was established using a multi-step approach combining directed evolution and rational protein design. A broad combinatorial protein library with 20 randomized positions in ABD was designed and binders against three distinct targets were selected using phage display. Characterization of the selected binders provided information regarding optimal positions to randomize in a final library. In addition, the isolated binders were subjected to mutagenesis in certain surface exposed positions and mutations that provided increased stability were introduced into the original scaffold. Finally, a more focused combinatorial protein library consisting of 11 randomized positions was designed and constructed. The library was validated by selections against the same set of targets as for the first, broad library. The isolation of highly stable affinity ligands confirms that the library can be used for generation of diverse and stable affinity molecules.QC 20180315</p
Quantum Dot-Based FRET Immunoassay for HER2 Using Ultrasmall Affinity Proteins
International audienceEngineered scaffold affinity proteins are used in many biological applications with the aim of replacing natural antibodies. Although their very small sizes are beneficial for multivalent nanoparticle conjugation and efficient Förster resonance energy transfer (FRET), the application of engineered affinity proteins in such nanobiosensing formats has been largely neglected. Here, it is shown that very small (≈6.5 kDa) histidine-tagged albumin-binding domain-derived affinity proteins (ADAPTs) can efficiently self-assemble to zwitterionic ligand-coated quantum dots (QDs). These ADAPT-QD conjugates are significantly smaller than QD-conjugates based on IgG, Fab', or single-domain antibodies. Immediate applicability by the quantification of the human epidermal growth factor receptor 2 (HER2) in serum-containing samples using time-gated Tb-to-QD FRET detection on the clinical benchtop immunoassay analyzer KRYPTOR is demonstrated here. Limits of detection down to 40 × 10-12 m (≈8 ng mL-1 ) are in a relevant clinical concentration range and outperform previously tested assays with antibodies, antibody fragments, and nanobodies
Comparative evaluation of tumor targeting using the anti-HER2 ADAPT scaffold protein labeled at the C-terminus with indium-111 or technetium-99m
ABD-Derived Affinity Proteins (ADAPTs) is a novel class of engineered scaffold proteins derived from an albumin-binding domain of protein G. The use of ADAPT6 derivatives as targeting moiety have provided excellent preclinical radionuclide imaging of human epidermal growth factor 2 (HER2) tumor xenografts. Previous studies have demonstrated that selection of nuclide and chelator for its conjugation has an appreciable effect on imaging properties of scaffold proteins. In this study we performed a comparative evaluation of the anti-HER2 ADAPT having an aspartate-glutamate-alanine-valine-aspartate-alanine-asparagine-serine (DEAVDANS) N-terminal sequence and labeled at C-terminus with (99)mTc using a cysteine-containing peptide based chelator, glycine-serine-serine-cysteine (GSSC), and a similar variant labeled with In-111 using a maleimido derivative of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. Both (99)mTc-DEAVDANS-ADAPT6-GSSC and In-111-DEAVDANS-ADAPT6-GSSC-DOTA accumulated specifically in HER2-expressing SKOV3 xenografts. The tumor uptake of both variants did not differ significantly and average values were in the range of 19-21% ID/g. However, there was an appreciable variation in uptake of conjugates in normal tissues that resulted in a notable difference in the tumor-to-organ ratios. The In-111-DOTA label provided 2-6 fold higher tumor-to-organ ratios than (99)mTc-GSSC and is therefore the preferable label for ADAPTs
Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein
Albumin binding domain-Derived Affinity ProTeins (ADAPTs) are small (5 kDa) engineered scaffold proteins that are promising targeting agents for radionuclide-based imaging. A recent clinical study has demonstrated that radiolabeled ADAPTs can efficiently visualize human epidermal growth factor receptor 2 (HER2) expression in breast cancer using SPECT imaging. However, the use of ADAPTs directly labeled with radiometals for targeted radionuclide therapy is limited by their high reabsorption and prolonged retention of activity in kidneys. In this study, we investigated whether a co-injection of lysine or gelofusin, commonly used for reduction of renal uptake of radiolabeled peptides in clinics, would reduce the renal uptake of [Tc-99m]Tc(CO)(3)-ADAPT6 in NMRI mice. In order to better understand the mechanism behind the reabsorption of [Tc-99m]Tc(CO)(3)-ADAPT6, we included several compounds that act on various parts of the reabsorption system in kidneys. Administration of gelofusine, lysine, probenecid, furosemide, mannitol, or colchicine did not change the uptake of [Tc-99m]Tc(CO)(3)-ADAPT6 in kidneys. Sodium maleate reduced the uptake of [Tc-99m]Tc(CO)(3)-ADAPT6 to ca. 25% of the uptake in the control, a high dose of fructose (50 mmol/kg) reduced the uptake by ca. two-fold. However, a lower dose (20 mmol/kg) had no effect. These results indicate that common clinical strategies are not effective for reduction of kidney uptake of [Tc-99m]Tc(CO)(3)-ADAPT6 and that other strategies for reduction of activity uptake or retention in kidneys should be investigated for ADAPT6
Reduction of renal activity retention of radiolabeled albumin binding domain-derived affinity proteins using a non-residualizing label strategy compared with a cleavable glycine-leucine-glycine-lysine-linker
The feasibility of targeted imaging and therapy using radiolabeled albumin-binding domain-derived affinity proteins (ADAPTs) has been demonstrated. However, high renal uptake of radioactivity limits the maximum tolerated dose. Successful reduction of renal retention of radiolabeled Fab fragments has been demonstrated by incorporating a cleavable linker between the targeting agent and the radiometal chelator. The present study investigated if the introduction of a glycine-leucine-glycine-lysine (GLGK)-linker would reduce the kidney uptake of radiolabeled ADAPT6 and also compared it with the non-residualizing [125I]I-[(4-hydroxyphenyl)ethyl]maleimide ([125I]I-HPEM) labeling strategy. GLGK was site-specifically coupled to human epidermal growth factor receptor 2 (HER2)-targeting ADAPT6. Conjugates without the cleavable linker were used as controls and all constructs were labeled with lutetium-177 (177Lu). [125I]I-HPEM was coupled to ADAPT6 at the C-terminus. Biodistribution of all constructs was evaluated in NMRI mice 4 h after injection. Specific binding to HER2-expressing cells in vitro was demonstrated for all constructs. No significant difference in kidney uptake was observed between the [177Lu]Lu-2,2 ',2",2"'-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid-GLGK-conjugates and the controls. The renal activity of [125I]I-HPEM-ADAPT6 was significantly lower compared with all other constructs. In conclusion, the incorporation of the cleavable GLGK-linker did not result in lower renal retention. Therefore, the present study emphasized that, in order to achieve a reduction of renal retention, alternative molecular design strategies may be required for different targeting agents
Selection of the optimal macrocyclic chelators for labeling with 111In and 68Ga improves contrast of HER2 imaging using engineered scaffold protein ADAPT6
Radionuclide molecular imaging is a promising tool that becomes increasingly important as targeted cancer therapies are developed. To ensure an effective treatment, a molecular stratification of the cancer is a necessity. To accomplish this, visualization of cancer associated molecular abnormalities in vivo by molecular imaging is the method of choice. ADAPTs, a novel type of small protein scaffold, have been utilized to select and develop high affinity binders to different proteinaceous targets. One of these binders, ADAPT6 selectively interacts with human epidermal growth factor 2 (HER2) with low nanomolar affinity and can therefore be used for its in vivo visualization. Molecular design and optimization of labeled anti-HER2 ADAPT has been explored in several earlier studies, showing that small changes in the scaffold affect the biodistribution of the domain. In this study, we evaluate how the biodistribution properties of ADAPT6 is affected by the commonly used maleimido derivatives of the macrocyclic chelators NOTA, NODAGA, DOTA and DOTAGA with the aim to select the best variants for SPECT and PET imaging. The different conjugates were labeled with 111In for SPECT and 68Ga for PET. The acquired data show that the combination of a radionuclide and a chelator for its conjugation has a strong influence on the uptake of ADAPT6 in normal tissues and thereby gives a significant variation in tumor-toorgan ratios. Hence, it was concluded that the best variant for SPECT imaging is 111In-(HE)3DANS-ADAPT6-GSSC-DOTA while the best variant for PET imaging is 68Ga-(HE)3DANS-ADAPT6-GSSC-NODAGA.De 2 första författarna delar förstaförfattarskapet.</p
Direct In Vivo Comparison of <sup>99m</sup>Tc-Labeled Scaffold Proteins, DARPin G3 and ADAPT6, for Visualization of HER2 Expression and Monitoring of Early Response for Trastuzumab Therapy
Non-invasive radionuclide molecular visualization of human epidermal growth factor receptor type 2 (HER2) can provide stratification of patients for HER2-targeting therapy. This method can also enable monitoring of the response to such therapies, thereby making treatment personalized and more efficient. Clinical evaluation in a phase I study demonstrated that injections of two scaffold protein-based imaging probes, [99mTc]Tc-(HE)3-G3 and [99mTc]Tc-ADAPT6, are safe, well-tolerated and cause a low level of radioactivity in healthy tissue. The goal of this preclinical study was to select the best probe for stratification of patients and response monitoring. Biodistribution of both tracers was compared in mice bearing SKOV-3 xenografts with high HER2 expression or MDA-MB-468 xenografts with very low expression. Changes in accumulation of the probes in SKOV-3 tumors 24 h after injection of trastuzumab were evaluated. Both [99mTc]Tc-ADAPT6 and [99mTc]Tc-(HE)3-G3 permitted high contrast imaging of HER2-expressing tumors and a clear discrimination between tumors with high and low HER2 expression. However, [99mTc]Tc-ADAPT6 has better preconditions for higher sensitivity and specificity of stratification. On the other hand, [99mTc]Tc-(HE)3-G3 is capable of detecting the decrease of HER2 expression on response to trastuzumab therapy only 24 h after injection of the loading dose. This indicates that the [99mTc]Tc-(HE)3-G3 tracer would be better for monitoring early response to such treatment. The results of this study should be considered in planning of further clinical development of HER2 imaging probes