44 research outputs found
Unraveling the enigma: progress towards understanding the coronin family of actin regulators
Coronins are a conserved family of actin cytoskeleton regulators that promote cell motility and modulate other actin-dependent processes. Although these proteins have been known for twenty years, substantial progress has been made in the last five years towards understanding coronins. Here, we review this progress, place it into the context of what was already known and pose several questions that remain to be addressed. In particular, we cover the emerging consensus about the role of Type I coronins in coordinating the function of Arp2/3 complex and ADF/cofilin proteins. This coordination plays an important role in leading edge actin dynamics and overall cell motility. Finally, we discuss the roles played by the more exotic coronins of the Type II and III classes in cellular processes away from the leading edge
β2-Adrenoceptors on tumor cells play a critical role in stress-enhanced metastasis in a mouse model of breast cancer
© 2016 The Authors Chronic stress accelerates metastasis – the main cause of death in cancer patients – through the activation of β-adrenoceptors (βARs). We have previously shown that β2AR signaling in MDA-MB-231HM breast cancer cells, facilitates invadopodia formation and invasion in vitro. However, in the tumor microenvironment where many stromal cells also express βAR, the role of β2AR signaling in tumor cells in metastasis is unclear. Therefore, to investigate the contribution of β2AR signaling in tumor cells to metastasis in vivo, we used RNA interference to generate MDA-MB-231HM breast cancer cells that are deficient in β2AR. β2AR knockdown in tumor cells reduced the proportion of cells with a mesenchymal-like morphology and, as expected, reduced tumor cell invasion in vitro. Conversely, overexpression of β2AR in low metastatic MCF-7 breast cancer cells induced an invasive phenotype. Importantly, we found that knockdown of β2AR in tumor cells significantly reduced the impact of stress on metastasis in vivo. These findings highlight a crucial role for β2AR tumor cell signaling in the adverse effects of stress on metastasis, and indicate that it may be necessary to block β2AR on tumor cells to fully control metastatic progression
Automated analysis of invadopodia dynamics in live cells
Multiple cell types form specialized protein complexes that are used by the cell to actively degrade the surrounding extracellular matrix. These structures are called podosomes or invadopodia and collectively referred to as invadosomes. Due to their potential importance in both healthy physiology as well as in pathological conditions such as cancer, the characterization of these structures has been of increasing interest. Following early descriptions of invadopodia, assays were developed which labelled the matrix underneath metastatic cancer cells allowing for the assessment of invadopodia activity in motile cells. However, characterization of invadopodia using these methods has traditionally been done manually with time-consuming and potentially biased quantification methods, limiting the number of experiments and the quantity of data that can be analysed. We have developed a system to automate the segmentation, tracking and quantification of invadopodia in time-lapse fluorescence image sets at both the single invadopodia level and whole cell level. We rigorously tested the ability of the method to detect changes in invadopodia formation and dynamics through the use of well-characterized small molecule inhibitors, with known effects on invadopodia. Our results demonstrate the ability of this analysis method to quantify changes in invadopodia formation from live cell imaging data in a high throughput, automated manner
Automated analysis of invadopodia dynamics in live cells
Multiple cell types form specialized protein complexes that are used by the cell to actively degrade the surrounding extracellular matrix. These structures are called podosomes or invadopodia and collectively referred to as invadosomes. Due to their potential importance in both healthy physiology as well as in pathological conditions such as cancer, the characterization of these structures has been of increasing interest. Following early descriptions of invadopodia, assays were developed which labelled the matrix underneath metastatic cancer cells allowing for the assessment of invadopodia activity in motile cells. However, characterization of invadopodia using these methods has traditionally been done manually with time-consuming and potentially biased quantification methods, limiting the number of experiments and the quantity of data that can be analysed. We have developed a system to automate the segmentation, tracking and quantification of invadopodia in time-lapse fluorescence image sets at both the single invadopodia level and whole cell level. We rigorously tested the ability of the method to detect changes in invadopodia formation and dynamics through the use of well-characterized small molecule inhibitors, with known effects on invadopodia. Our results demonstrate the ability of this analysis method to quantify changes in invadopodia formation from live cell imaging data in a high throughput, automated manner
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Stimulating a Canadian narrative for climate
ABSTRACT: This perspective documents current thinking around climate actions in Canada by synthesizing scholarly proposals made by Sustainable Canada Dialogues (SCD), an informal network of scholars from all 10 provinces, and by reviewing responses from civil society representatives to the scholars' proposals. Motivated by Canada's recent history of repeatedly missing its emissions reduction targets and failing to produce a coherent plan to address climate change, SCD mobilized more than 60 scholars to identify possible pathways towards a low-carbon economy and sustainable society and invited civil society to comment on the proposed solutions. This perspective illustrates a range of Canadian ideas coming from many sectors of society and a wealth of existing inspiring initiatives. Solutions discussed include climate change governance, low-carbon transition, energy production, and consumption. This process of knowledge synthesis/creation is novel and important because it provides a working model for making connections across academic fields as well as between academia and civil society. The process produces a holistic set of insights and recommendations for climate change actions and a unique model of engagement. The different voices reported here enrich the scope of possible solutions, showing that Canada is brimming with ideas, possibilities, and the will to act