8 research outputs found
Diagnostic challenges in meningioma
Advances in molecular profiling and the application of advanced imaging techniques are currently refreshing diagnostic considerations in meningioma patients. Not only technical refinements but also sophisticated histopathological and molecular studies have the potential to overcome some of the challenges during meningioma management. Exact tumor delineation, assessment of tumor growth, and pathophysiological parameters were recently addressed by advanced MRI and PET. In the field of neuropathology, high-throughput sequencing and DNA methylation analysis of meningioma tissue has greatly advanced the knowledge of molecular aberrations in meningioma patients. These techniques allow for more reliable prediction of the biological behavior and clinical course of meningiomas and subsequently have the potential to guide individualized meningioma therapy. However, higher costs and longer duration of full molecular work-up compared with histological assessment may delay the implementation into clinical routine. This review highlights the diagnostic challenges of meningiomas from both the neuroimaging as well as the neuropathological side and presents the latest scientific achievements and studies potentially helping in overcoming these challenges. It complements the recently proposed European Association of Neuro-Oncology guidelines on treatment and diagnosis of meningiomas by integrating data on nonstandard imaging and molecular assessments most likely impacting the future
Symptomatic hemiparkinsonism due to extensive middle and posterior fossa arachnoid cyst: case report
IntroductionIntracranial neoplasms are an uncommon cause of symptomatic parkinsonism. We here report a patient with an extensive middle and posterior fossa arachnoid cyst presenting with parkinsonism that was treated by neurosurgical intervention.MethodsRetrospective chart review and clinical examination of the patient.Case reportThis 55-year-old male patient with hemiparkinsonism and recurrent bouts of headaches was first diagnosed in 1988. CT scans revealed multiple cystic lesions compressing brainstem and basal ganglia, which were partially resected. Subsequently, the patient was free of complaints for 20years. In 2009 the patient presented once more with severe unilateral tremor and thalamic pain affecting the right arm. Despite symptomatic treatment with L-Dopa and pramipexole symptoms worsened over time. In 2014 there was further progression with increasing hemiparkinsonism, hemidystonia, unilateral thalamic pain and pyramidal signs. Repeat CT scanning revealed a progression of the cysts as well as secondary hydrocephalus. Following repeat decompression of the brainstem and fenestration of all cystic membranes parkinsonism improved with a MDS- UPDRS III score reduction from 39 to 21. Histology revealed arachnoid cystic material.ConclusionWe report on a rare case of recurrent symptomatic hemiparkinsonism resulting from arachnoid cysts
MRI Response Assessment in Glioblastoma Patients Treated with Dendritic-Cell-Based Immunotherapy
Introduction: In this post hoc analysis we compared various response-assessment criteria in newly diagnosed glioblastoma (GB) patients treated with tumor lysate-charged autologous dendritic cells (Audencel) and determined the differences in prediction of progression-free survival (PFS) and overall survival (OS). Methods: 76 patients enrolled in a multicenter phase II trial receiving standard of care (SOC, n = 40) or SOC + Audencel vaccine (n = 36) were included. MRI scans were evaluated using MacDonald, RANO, Vol-RANO, mRANO, Vol-mRANO and iRANO criteria. Tumor volumes (T1 contrast-enhancing as well as T2/FLAIR volumes) were calculated by semiautomatic segmentation. The Kruskal-Wallis-test was used to detect differences in PFS among the assessment criteria; for correlation analysis the Spearman test was used. Results: There was a significant difference in median PFS between mRANO (8.6 months) and Vol-mRANO (8.6 months) compared to MacDonald (4.0 months), RANO (4.2 months) and Vol-RANO (5.4 months). For the vaccination arm, median PFS by iRANO was 6.2 months. There was no difference in PFS between SOC and SOC + Audencel. The best correlation between PFS/OS was detected for mRANO (r = 0.65) and Vol-mRANO (r = 0.69, each p < 0.001). A total of 16/76 patients developed a pure T2/FLAIR progressing disease, and 4/36 patients treated with Audencel developed pseudoprogression. Conclusion: When comparing different response-assessment criteria in GB patients treated with dendritic cell-based immunotherapy, the best correlation between PFS and OS was observed for mRANO and Vol-mRANO. Interestingly, iRANO was not superior for predicting OS in patients treated with Audencel
Audencel Immunotherapy Based on Dendritic Cells Has No Effect on Overall and Progression-Free Survival in Newly Diagnosed Glioblastoma: A Phase II Randomized Trial
Dendritic cells (DCs) are antigen-presenting cells that are capable of priming anti-tumor immune responses, thus serving as attractive tools to generate tumor vaccines. In this multicentric randomized open-label phase II study, we investigated the efficacy of vaccination with tumor lysate-charged autologous DCs (Audencel) in newly diagnosed glioblastoma multiforme (GBM). Patients aged 18 to 70 years with histologically proven primary GBM and resection of at least 70% were randomized 1:1 to standard of care (SOC) or SOC plus vaccination (weekly intranodal application in weeks seven to 10, followed by monthly intervals). The primary endpoint was progression-free survival at 12 months. Secondary endpoints were overall survival, safety, and toxicity. Seventy-six adult patients were analyzed in this study. Vaccinations were given for seven (3–20) months on average. No severe toxicity was attributable to vaccination. Seven patients showed flu-like symptoms, and six patients developed local skin reactions. Progression-free survival at 12 months did not differ significantly between the control and vaccine groups (28.4% versus 24.5%, p = 0.9975). Median overall survival was similar with 18.3 months (vaccine: 564 days, 95% CI: 436–671 versus control: 568 days, 95% CI: 349–680; p = 0.89, harzard ratio (HR) 0.99). Hence, in this trial, the clinical outcomes of patients with primary GBM could not be improved by the addition of Audencel to SOC
Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques
BACKGROUND: The identification of patients with high-risk atherosclerotic plaques prior to the manifestation of clinical events remains challenging. Recent findings question histology- and imaging-based definitions of the "vulnerable plaque," necessitating an improved approach for predicting onset of symptoms. METHODS: We performed a proteomics comparison of the vascular extracellular matrix and associated molecules in human carotid endarterectomy specimens from 6 symptomatic versus 6 asymptomatic patients to identify a protein signature for high-risk atherosclerotic plaques. Proteomics data were integrated with gene expression profiling of 121 carotid endarterectomies and an analysis of protein secretion by lipid-loaded human vascular smooth muscle cells. Finally, epidemiological validation of candidate biomarkers was performed in two community-based studies. RESULTS: Proteomics and at least one of the other two approaches identified a molecular signature of plaques from symptomatic patients that comprised matrix metalloproteinase 9, chitinase 3-like-1, S100 calcium binding protein A8 (S100A8), S100A9, cathepsin B, fibronectin, and galectin-3-binding protein. Biomarker candidates measured in 685 subjects in the Bruneck study were associated with progression to advanced atherosclerosis and incidence of cardiovascular disease over a 10-year follow-up period. A 4-biomarker signature (matrix metalloproteinase 9, S100A8/S100A9, cathepsin D, and galectin-3-binding protein) improved risk prediction and was successfully replicated in an independent cohort, the SAPHIR study. CONCLUSION: The identified 4-biomarker signature may improve risk prediction and diagnostics for the management of cardiovascular disease. Further, our study highlights the strength of tissue-based proteomics for biomarker discovery. FUNDING: UK: British Heart Foundation (BHF); King's BHF Center; and the National Institute for Health Research Biomedical Research Center based at Guy's and St Thomas' NHS Foundation Trust and King's College London in partnership with King's College Hospital. Austria: Federal Ministry for Transport, Innovation and Technology (BMVIT); Federal Ministry of Science, Research and Economy (BMWFW); Wirtschaftsagentur Wien; and Standortagentur Tirol