8 research outputs found

    Enhanced IgE allergic response to Aspergillus fumigatus in CFTR-/- mice

    No full text
    To gain insight into aberrant cytokine regulation in cystic fibrosis (CF), we compared the phenotypic manifestations of allergen challenge in gut-corrected CFTR-deficient mice with background-matched C57Bl6 (B6) mice. Aspergillus fumigatus (Af) antigen was used to mimic allergic bronchopulmonary aspergillosis, a peculiar hyper-IgE syndrome with a high prevalence in CF patients. CFTR-/-, C57BL/6 and FVB/NJ mice were sensitized with Af antigen by serial intraperitoneal injections. Control mice were mock sensitized with PBS. Challenges were performed by inhalation of Af antigen aerosol. After Af antigen challenge, histologic analysis showed goblet cell hyperplasia and lymphocytic infiltration in both strains. However, total serum IgE levels were markedly elevated in CF mice. Sensitized CF mice showed a five-fold greater IgE response to sensitization as compared with B6- and FVB-sensitized controls. Additional littermate controls to fully normalize for B6-FVB admixture in the strain background confirmed the role of CFTR mutation in the hyper-IgE syndrome. Cytokine mRNA levels of IL-5 and GM-CSF in the bronchoalveolar lavage (BAL) fluid, and BAL cell differentials indicated that CFTR mutation caused a shift from an IL-5-predominant to an IL-4-predominant cytokine profile. This system models a very specific type of airway inflammation in CF and could provide insights into pathogenesis and treatment of the disease

    Cytokine-induced changes in chromatin structure and in vivo footprints in the inducible NOS promoter

    No full text
    Transcription of the human inducible nitric oxide synthase (iNOS) gene is regulated by inflammatory cytokines in a tissue-specific manner. To determine whether differences in cytokine-induced mRNA levels between pulmonary epithelial cells (A549) and hepatic biliary epithelial cells (AKN-1) result from different protein or DNA regulatory mechanisms, we identified cytokine-induced changes in DNase I-hypersensitive (HS) sites in 13 kb of the iNOS 5\u27-flanking region. Data showed both constitutive and inducible HS sites in an overlapping yet cell type-specific pattern. Using in vivo footprinting and ligation-mediated PCR to detect potential DNA or protein interactions, we examined one promoter region near -5 kb containing both constitutive and cytokine-induced HS sites. In both cell types, three in vivo footprints were present in both control and cytokine-treated cells, and each mapped within a constitutive HS site. The remaining footprint appeared only in response to cytokine treatment and mapped to an inducible HS site. These studies, performed on chromatin in situ, identify a portion of the molecular mechanisms regulating transcription of the human iNOS gene in both lung- and liver-derived epithelial cells
    corecore