9 research outputs found
Status of the micro-X sounding rocket x-ray spectrometer
Micro-X is a sounding rocket borne X-ray telescope that utilizes transition edge sensors to perform imaging spectroscopy with a high level of energy resolution. Its 2.1m focal length X-ray optic has an effective area of 300 cm 2 , a field of view of 11.8 arcmin, and a bandpass of 0.1-2.5 keV. The detector array has 128 pixels and an intrinsic energy resolution of 4.5 eV FWHM. The integration of the system has progressed with functional tests of the detectors and electronics complete, and performance characterization of the detectors is underway. We present an update of ongoing progress in preparation for the upcoming launch of the instrument.NASA Space Technology Research FellowshipUnited States. National Aeronautics and Space Administration (grant NNX10AE25G
A possible role for adenosine monophosphate‐activated protein kinase in regulating tubulin acetylation (739.10)
Thermal Design for the Micro-X Rocket Payload
Micro-X is a NASA funded, rocket borne X-ray imaging spectrometer that uses transition edge sensors (TESs) to do high-resolution microcalorimetry. The TESs are cooled by an adiabatic demagnetization refrigerator, whose salt pill functions as a heat sink for the detectors. We have made a thermal model of the cryostat with SPICE for the purposes of understanding its behavior at low temperatures. Implementing modifications based on this model has further allowed us to cool the system down to a lower temperature than had previously been accessible and to improve its low-temperature hold time. These modifications include a variety of schemes for power through heat sinks and tweaking the conductance between the cold baths and the refrigerated hardware. We present an overview of the model and its constituent parameters, information about thermal modifications, and a summary of results from thermal tests of the entire system.United States. National Aeronautics and Space Administration (Space Technology Research Fellowship
Increased REM Sleep Density at Admission Predicts Relapse by Three Months in Primary Alcoholics with a Lifetime Diagnosis of Secondary Depression
Polysomnography and depressive symptoms in primary alcoholics with and without a lifetime diagnosis of secondary depression and in patients with primary major depression
Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation
Staging tau pathology with tau PET in Alzheimer’s disease: a longitudinal study
AbstractA biological research framework to define Alzheimer’ disease with dichotomized biomarker measurement was proposed by National Institute on Aging–Alzheimer’s Association (NIA–AA). However, it cannot characterize the hierarchy spreading pattern of tau pathology. To reflect in vivo tau progression using biomarker, we constructed a refined topographic 18F-AV-1451 tau PET staging scheme with longitudinal clinical validation. Seven hundred and thirty-four participants with baseline 18F-AV-1451 tau PET (baseline age 73.9 ± 7.7 years, 375 female) were stratified into five stages by a topographic PET staging scheme. Cognitive trajectories and clinical progression were compared across stages with or without further dichotomy of amyloid status, using linear mixed-effect models and Cox proportional hazard models. Significant cognitive decline was first observed in stage 1 when tau levels only increased in transentorhinal regions. Rates of cognitive decline and clinical progression accelerated from stage 2 to stage 3 and stage 4. Higher stages were also associated with greater CSF phosphorylated tau and total tau concentrations from stage 1. Abnormal tau accumulation did not appear with normal β-amyloid in neocortical regions but prompt cognitive decline by interacting with β-amyloid in temporal regions. Highly accumulated tau in temporal regions independently led to cognitive deterioration. Topographic PET staging scheme have potentials in early diagnosis, predicting disease progression, and studying disease mechanism. Characteristic tau spreading pattern in Alzheimer’s disease could be illustrated with biomarker measurement under NIA–AA framework. Clinical–neuroimaging–neuropathological studies in other cohorts are needed to validate these findings.</jats:p
Plasma phosphorylated-tau181 as a predictive biomarker for Alzheimer’s amyloid, tau and FDG PET status
AbstractPlasma phosphorylated-tau181 (p-tau181) showed the potential for Alzheimer’s diagnosis and prognosis, but its role in detecting cerebral pathologies is unclear. We aimed to evaluate whether it could serve as a marker for Alzheimer’s pathology in the brain. A total of 1189 participants with plasma p-tau181 and PET data of amyloid, tau or FDG PET were included from ADNI. Cross-sectional relationships of plasma p-tau181 with PET biomarkers were tested. Longitudinally, we further investigated whether different p-tau181 levels at baseline predicted different progression of Alzheimer’s pathological changes in the brain. We found plasma p-tau181 significantly correlated with brain amyloid (Spearman ρ = 0.45, P < 0.0001), tau (0.25, P = 0.0003), and FDG PET uptakes (−0.37, P < 0.0001), and increased along the Alzheimer’s continuum. Individually, plasma p-tau181 could detect abnormal amyloid, tau pathologies and hypometabolism in the brain, similar with or even better than clinical indicators. The diagnostic accuracy of plasma p-tau181 elevated significantly when combined with clinical information (AUC = 0.814 for amyloid PET, 0.773 for tau PET, and 0.708 for FDG PET). Relationships of plasma p-tau181 with brain pathologies were partly or entirely mediated by the corresponding CSF biomarkers. Besides, individuals with abnormal plasma p-tau181 level (>18.85 pg/ml) at baseline had a higher risk of pathological progression in brain amyloid (HR: 2.32, 95%CI 1.32–4.08) and FDG PET (3.21, 95%CI 2.06–5.01) status. Plasma p-tau181 may be a sensitive screening test for detecting brain pathologies, and serve as a predictive biomarker for Alzheimer’s pathophysiology.</jats:p
