5 research outputs found

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201

    Disentangling the Anacondas: Revealing a New Green Species and Rethinking Yellows

    No full text
    Anacondas, genus Eunectes, are a group of aquatic snakes with a wide distribution in South America. The taxonomic status of several species has been uncertain and/or controversial. Using genetic data from four recognized anaconda species across nine countries, this study investigates the phylogenetic relationships within the genus Eunectes. A key finding was the identification of two distinct clades within Eunectes murinus, revealing two species as cryptic yet genetically deeply divergent. This has led to the recognition of the Northern Green Anaconda as a separate species (Eunectes akayima sp. nov), distinct from its southern counterpart (E. murinus), the Southern Green Anaconda. Additionally, our data challenge the current understanding of Yellow Anaconda species by proposing the unification of Eunectes deschauenseei and Eunectes beniensis into a single species with Eunectes notaeus. This reclassification is based on comprehensive genetic and phylogeographic analyses, suggesting closer relationships than previously recognized and the realization that our understanding of their geographic ranges is insufficient to justify its use as a separation criterion. We also present a phylogeographic hypothesis that traces the Miocene diversification of anacondas in western South America. Beyond its academic significance, this study has vital implications for the conservation of these iconic reptile species, highlighting our lack of knowledge about the diversity of the South American fauna and the need for revised strategies to conserve the newly identified and reclassified species

    Description of the Northern Green Anaconda (<i>Eunectes akayima</i> sp. nov. Serpentes; Boidae): What Is in a Name?

    No full text
    While elucidating the evolutionary trajectory of green anacondas, we previously documented the existence of two distinct species, Eunectes akayima sp. nov. and Eunectes murinus (Linnaeus, 1758), that separated approximately 10 million years ago. Our research integrates a novel molecular clock approach, focuses on tectonic plate movements with fossil records as minimal chronological markers, and offers a refined understanding of speciation events in relation to major biogeographical occurrences in South America. Mitochondrial DNA analysis demonstrates a significant genetic divergence between the species, which is supported by a notable difference in sexual size dimorphism (SSD) intensity between the two species, along with other morphological differences. This paper also rectifies earlier oversights in the description of the new species and clarifies taxonomic ambiguities in compliance with the International Code of Zoological Nomenclature (henceforth ICZN). In addition, we designate a neotype for E. murinus to stabilize the group. In an effort to honor Indigenous nations, E. akayima sp. nov. derives its name from the Carib language, advocating for the inclusion of traditional names in scientific discourse. Our paper not only contributes to the taxonomic stability of anacondas but also advocates for the usage of Indigenous names in zoological nomenclature by adopting a more inclusive and flexible approach to the ICZN and eliminating unintended exclusionary practices that we have inherited in science as in other disciplines

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    No full text

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore