20 research outputs found

    Mechanisms of Airway Remodelling

    Get PDF
    Asthma is an inflammatory disease characterised by tissue remodelling. A prominent feature of this remodelling is an increase in the number and size of the blood vessels- formed from pre-existing capillaries – angiogenesis (Siddiqui et al., 2007; Wilson, 2003). This is triggered by many different endogenous angiogenic stimulators such as vascular endothelial growth factor (VEGF), and inhibited by endogenous angiogenic inhibitors such as tumstatin. Tumstatin is the non-collagenous domain (NC1) of the collagen IV α3 chain which, when cleaved, inhibits endothelial cell proliferation and induces apoptosis. Experiments described in this thesis have for the first time demonstrated the absence of tumstatin in the airways of individuals with asthma and lymphangioleiomyomatosis (LAM) as well as the functional responses to tumstatin as an angiogenic inhibitor, both in vitro and in vivo, in the airway. Although tumstatin was absent from the airways of asthmatic and LAM individuals it was present in the airways of individuals with no airways disease, chronic obstructive pulmonary disease, bronchiectasis and cystic fibrosis. No significant difference was seen in the levels of the Goodpasture Binding Protein (GPBP), a phosphorylating protein responsible for the alternate folding of tumstatin, between asthmatic, LAM and individuals with no airways disease. The αvβ3 integrin, reported to be necessary for the activity of tumstatin, as well as the individual αv and β3 sub-units were shown to be equally expressed in the airways of all patient groups. Co-localisation of tumstatin, VEGF and the αvβ3 integrin was seen in the disease free airways, however, a different pattern of VEGF and the αvβ3 integrin expression was observed in asthmatic and LAM airways with minimal co-localisation. Tumstatin was detected in serum and bronchoalveolar lavage fluid (BAL-f) samples from asthmatics and individuals with no airway disease, however there was no significant difference in the level of expression between the two groups. It was demonstrated that the tumstatin detected in the serum and BAL-f samples from asthmatics and individuals with no airway disease was part of the whole collagen IV α3 chain and not in its free and potentially active form. The ability of recombinant tumstatin to inhibit tube formation and proliferation of primary pulmonary endothelial cells was demonstrated for the first time. Further, the functional response of tumstatin was demonstrated in vivo in a mouse model of allergic airway disease. Tumstatin inhibited angiogenesis in the airway and decreased airway hyperresponsiveness. Whether there is potential for tumstatin, or a derivative thereof, to be of therapeutic value in airways diseases in which angiogenesis is a component should be the subject of future studies

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Airway vascular reactivity and vascularisation in human chronic airway disease

    Full text link
    Altered bronchial vascular reactivity and remodelling including angiogenesis are documented features of asthma and other chronic inflammatory airway diseases. Expansion of the bronchial vasculature under these conditions involves both functional (vasodilation, hyperperfusion, increased microvascular permeability, oedema formation, and inflammatory cell recruitment) and structural changes (tissue and vascular remodelling) in the airways. These changes in airway vascular reactivity and vascularisation have significant pathophysiological consequences, which are manifest in the clinical symptoms of airway disease. Airway vascular reactivity is regulated by a wide variety of neurotransmitters and inflammatory mediators. Similarly, multiple growth factors are implicated in airway angiogenesis, with vascular endothelial growth factor amongst the most important. Increasing attention is focused on the complex interplay between angiogenic growth factors, airway smooth muscle and the various collagen-derived fragments that exhibit anti-angiogenic properties. The balance of these dynamic influences in airway neovascularisation processes and their therapeutic implications is just beginning to be elucidated. In this review article, we provide an account of recent developments in the areas of vascular reactivity and airway angiogenesis in chronic airway diseases

    Reduction of tumstatin in asthmatic airways contributes to angiogenesis, inflammation, and hyperresponsiveness

    Full text link
    Rationale: Angiogenesis is a prominent feature of remodeling in asthma. Many proangiogenic factors are up-regulated in asthma, but little is known about levels of endogenous antiangiogenic agents. Collagen IV is decreased in the airway basement membrane in asthma. It has six α chains, of which the noncollagenous domain-1 domains have endogenous antiangiogenic properties. Objectives: To study the expression of the noncollagenous domain-1 of the α3 chain of collagen IV, tumstatin, in the airways of subjects with and without asthma and to examine the potential for tumstatin to regulate angiogenesis and inflammation. Methods: We used immunohistochemistry and dot blots to examine the expression of tumstatin in bronchial biopsies, bronchoalveolar lavage fluid, and serum. We then used an in vitro angiogenesis assay and a murine model of allergic airways disease to explore tumstatin's biological function. Measurements and Main Results: The level of tumstatin is decreased 18-fold in the airways of patients with asthma but not in subjects without asthma, including those with chronic obstructive pulmonary disease, cystic fibrosis, and bronchiectasis. In vitro, recombinant tumstatin inhibited primary pulmonary endothelial cell tube formation. In a mouse model of chronic allergic airways disease, tumstatin suppressed angiogenesis, airway hyperresponsiveness, inflammatory cell infiltration, and mucus secretion and decreased levels of vascular endothelial growth factor and IL-13. Conclusions: The observation that tumstatin is decreased in asthmatic airways and inhibits airway hyperresponsiveness and angiogenesis demonstrates the potential use of antiangiogenic agents such as tumstatin as a therapeutic intervention in diseases that are characterized by aberrant angiogenesis and tissue remodeling, such as asthma

    The importance of migratory connectivity for global ocean policy

    Full text link
    The distributions of migratory species in the ocean span local, national and international jurisdictions. Across these ecologically interconnected regions, migratory marine species interact with anthropogenic stressors throughout their lives. Migratory connectivity, the geographical linking of individuals and populations throughout their migratory cycles, influences how spatial and temporal dynamics of stressors affect migratory animals and scale up to influence population abundance, distribution and species persistence. Population declines of many migratory marine species have led to calls for connectivity knowledge, especially insights from animal tracking studies, to be more systematically and synthetically incorporated into decision-making. Inclusion of migratory connectivity in the design of conservation and management measures is critical to ensure they are appropriate for the level of risk associated with various degrees of connectivity. Three mechanisms exist to incorporate migratory connectivity into international marine policy which guides conservation implementation: site-selection criteria, network design criteria and policy recommendations. Here, we review the concept of migratory connectivity and its use in international policy, and describe the Migratory Connectivity in the Ocean system, a migratory connectivity evidence-base for the ocean. We propose that without such collaboration focused on migratory connectivity, efforts to effectively conserve these critical species across jurisdictions will have limited effect

    The importance of migratory connectivity for global ocean policy

    Full text link
    The distributions of migratory species in the ocean span local, national and international jurisdictions. Across these ecologically interconnected regions, migratory marine species interact with anthropogenic stressors throughout their lives. Migratory connectivity, the geographical linking of individuals and populations throughout their migratory cycles, influences how spatial and temporal dynamics of stressors affect migratory animals and scale up to influence population abundance, distribution and species persistence. Population declines of many migratory marine species have led to calls for connectivity knowledge, especially insights from animal tracking studies, to be more systematically and synthetically incorporated into decision-making. Inclusion of migratory connectivity in the design of conservation and management measures is critical to ensure they are appropriate for the level of risk associated with various degrees of connectivity. Three mechanisms exist to incorporate migratory connectivity into international marine policy which guides conservation implementation: site-selection criteria, network design criteria and policy recommendations. Here, we review the concept of migratory connectivity and its use in international policy, and describe the Migratory Connectivity in the Ocean system, a migratory connectivity evidence-base for the ocean. We propose that without such collaboration focused on migratory connectivity, efforts to effectively conserve these critical species across jurisdictions will have limited effect
    corecore