21 research outputs found

    Synthesis of nanocomposite films based on conjugated oligomer-2D layered MoS2 as potential candidate for optoelectronic devices

    Get PDF
    In this investigation, we have analyzed the structural, electrical, and optical behaviors of pure and composite thin films which are obtained from 2D monolayer molybdenum disulfide (MoS2) flakes, conjugated oligomer (CO) 1,4-Bis(9-ethyl-3-carbazo-vinylene)-9,9-dihexyl-fluorene (BECV-DHF), and by combining CO (BECV-DHF) with MoS2 in forms of CO/MoS2 composites. All the samples are coated on SiO2/Si substrates using the spin coating procedure where a spin-coating solution has been obtained by dispersing CO and MoS2 in ethanol or toluene. The structural morphology of MoS2 films and CO/MoS2 films of various thicknesses are analyzed using field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), and profilometer. These experimental results confirm the formation of MoS2 layer composite with oligomer nanocrystals. The optical properties of MoS2, CO, and CO/MoS2 films showed that the increased film thickness shifted the spectral peaks towards near infrared (NIR) and ultraviolet?visible (UV) regions of the electromagnetic spectrum. Moreover, devices such as solar cells, flexible memory cell and MOSFET were designed. The I-V characteristics of these devices show that CO/MoS2 composite films could serve as potential candidates for organic-inorganic nano-electronic device applications. ? 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Time Evolution of the Excimer State of a Conjugated Polymer Laser

    No full text
    An excited dimer is an important complex formed in nano- or pico-second time scales in many photophysics and photochemistry applications. The spectral and temporal profile of the excimer state of a laser from a new conjugated polymer, namely, poly (9,9-dioctylfluorenyl-2,7-diyl) (PFO), under several concentrations in benzene were investigated. These solutions were optically pumped by intense pulsed third-harmonic Nd:YAG laser (355-nm) to obtain the amplified spontaneous emission (ASE) spectra of a monomer and an excimer with bandwidths of 6 and 7 nm, respectively. The monomer and excimer ASEs were dependent on the PFO concentration, pump power, and temperature. Employing a sophisticated picosecond spectrometer, the time evolution of the excimer state of this polymer, which is over 400 ps, can be monitored

    Encapsulated Passivation of Perovskite Quantum Dot (CsPbBr3) Using a Hot-Melt Adhesive (EVA-TPR) for Enhanced Optical Stability and Efficiency

    No full text
    The notable photophysical characteristics of perovskite quantum dots (PQDs) (CsPbBr3) are suitable for optoelectronic devices. However, the performance of PQDs is unstable because of their surface defects. One way to address the instability is to passivate PQDs using different organic (polymers, oligomers, and dendrimers) or inorganic (ZnS, PbS) materials. In this study, we performed steady-state spectroscopic investigations to measure the photoluminescence (PL), absorption (A), transmission (T), and reflectance (R) of perovskite quantum dots (CsPbBr3) and ethylene vinyl acetate/terpene phenol (1%) (EVA-TPR (1%), or EVA) copolymer/perovskite composites in thin films with a thickness of 352 ± 5 nm. EVA is highly transparent because of its large band gap; furthermore, it is inexpensive and easy to process. However, the compatibility between PQDs and EVA should be established; therefore, a series of analyses was performed to compute parameters, such as the band gap, the coefficients of absorbance and extinction, the index of refractivity, and the dielectric constant (real and imaginary parts), from the data obtained from the above investigation. Finally, the optical conductivities of the films were studied. All these analyses showed that the EVA/PQDs were more efficient and stable both physically and optically. Hence, EVA/PQDs could become copolymer/perovskite active materials suitable for optoelectronic devices, such as solar cells and perovskite/polymer light-emitting diodes (PPLEDs)

    Relaxation Oscillation with Picosecond Spikes in a Conjugated Polymer Laser

    No full text
    Optically pumped conjugated polymer lasers are good competitors for dye lasers, often complementing and occasionally replacing them. This new type of laser material has broad bandwidths and high optical gains comparable to conventional laser dyes. Since the Stokes’ shift is unusually large, the conjugated polymer has a potential for high power laser action, facilitated by high concentration. This paper reports the results of a new conjugated polymer, the poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}](PFO-co-MEH-PPV) material, working in the green region. Also discussed are the spectral and temporal features of the amplified spontaneous emissions (ASE) from the conjugated polymer PFO-co-MEH-PPV in a few solvents. When pumped by the third harmonic of the Nd:YAG laser of 10 ns pulse width, the time-resolved spectra of the ASE show relaxation oscillations and spikes of 600 ps pulses. To the best of our knowledge, this is the first report on relaxation oscillations in conjugated-polymer lasers

    A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser

    No full text
    Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%

    Gamma-Irradiation Effects on the Spectral and Amplified Spontaneous Emission (ASE) Properties of Conjugated Polymers in Solution

    No full text
    In this paper, we investigate the effects of gamma (γ) radiation on the spectral and mplified spontaneous emission (ASE) properties of two conjugated polymers (CPs) viz., poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH–PPV) (CPM) and poly{[2-[2′,5′-bis(2″-ethylhexyloxy)phenyl]-1,4-phenylenevinylene]-co-[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene]} (BEHP-co-MEH–PPV) (BMP) in tetrahydrofuran (THF). Gamma irradiation strongly affected the photophysical properties of these CPs. To explore these changes, gamma radiation, in the range of 2–50 kGy, was used to maintain the temperature at 5 °C constant for all doses at a dose rate of 12.67 kGy/h, using a 60Co gamma ray. The ASE profiles of the CPs in THF were obtained under the high power excitation of a Nd:YAG laser (355 nm), pre- and post-radiation. The result revealed a dramatic blue shift of the fluorescence and the ASE spectra after gamma irradiation. This shift in the luminescence and ASE spectra could be a response to the conformational disorders such as gamma irradiation-induced polymer crosslinking, which was verified using Raman spectra, FTIR, and swelling experiments. This could be the first report on the effect of gamma radiation on the ASE properties of conjugated polymers

    Broadband Frequency-Tunable Whispering-Gallery-Mode Superradiant Light from Quantum Dots in Colloidal Solution

    No full text
    We examine superradiant (SR) light or amplified spontaneous emission (ASE) from a whispering-gallery-mode (WGM) laser comprising various sized (CdSe) ZnS quantum dots (QDs) in colloidal liquid. Laser-induced fluorescence (LIF) with a full width at half maximum (FWHM) of 40 nm is observed when the colloidal QD system is pumped with 2 mJ of laser light at 355 nm (3rd harmonic of Nd:YAG laser). Under optimal conditions of pump energy and focusing, ASE at 520 nm with a bandwidth of Δλ=8 nm (FWHM) and divergence of 9 mrad is observed. When the QDs are embedded on a high-Q factor silica microsphere ((functionalized with an amine), SMA), they generate WGMs with random peak distributions. Finally, when all the QDs embedded in SMAs are mixed and placed in a cuvette, we obtain a “WGM laser” that is almost continuously tunable from 520 nm to 630 nm with a spectral width less than 2 nm (FWHM) in the WGM and less than 1.2 nm in the cavity mode. We believe that this is the first report on a frequency tunable laser obtained using (CdSe) ZnS QDs embedded in an SMA, exhibiting an efficiency of 0.06%

    Fabrication of Cost-Effective Dye-Sensitized Solar Cells Using Sheet-Like CoS2 Films and Phthaloylchitosan-Based Gel-Polymer Electrolyte

    No full text
    Platinum-free counter electrodes (CE) were developed for use in efficient and cost-effective energy conversion devices, such as dye-sensitized solar cells (DSSCs). Electrochemical deposition of CoS2 on fluorine-doped tin oxide (FTO) formed a hierarchical sheet-like structured CoS2 thin film. This film was engaged as a cost-effective platinum-free and high-efficiency CE for DSSCs. High stability was achieved using a phthaloychitosan-based gel-polymer electrolyte as the redox electrolyte. The electrocatalytic performance of the sheet-like CoS2 film was analyzed by electrochemical impedance spectroscopy and cyclic voltammetry. The film displayed improved electrocatalytic behavior that can be credited to a low charge-transfer resistance at the CE/electrolyte boundary and improved exchange between triiodide and iodide ions. The fabricated DSSCs with a phthaloychitosan-based gel-polymer electrolyte and sheet-like CoS2 CE had a power conversion efficiency (PCE, η) of 7.29% with a fill factor (FF) of 0.64, Jsc of 17.51 mA/cm2, and a Voc of 0.65 V, which was analogous to that of Pt CE (η = 7.82%). The high PCE of the sheet-like CoS2 CE arises from the enhanced FF and Jsc, which can be attributed to the abundant active electrocatalytic sites and enhanced interfacial charge-transfer by the well-organized surface structure
    corecore