4 research outputs found

    Increased skin inflammation and blood vessel density in human and experimental diabetes

    No full text
    Systemic inflammation is associated with impaired wound healing in diabetes mellitus (DM) patients. Using immunohistochemistry techniques, the authors investigated changes in skin inflammation and skin blood vessels in human and experimental diabetes. Comparing to the non-DM human subjects, the total number of inflammatory cells per biopsy and the number of inflammatory cells around blood vessels, a strong indication of inflammation, were higher in DM subjects irrespective of their risk for developing diabetic foot ulcer. Inflammatory cell infiltration was robustly increased in all DM animal models compared with their non-DM controls. The number and density of blood vessels and CD31 positive proliferating endothelial cells around preexisting skin vessels was also higher in the DM patients. However, there were no differences in the skin blood flow between the non-DM and DM subjects. The number of skin blood vessels was also increased in the DM animals; however, these differences were less obvious than the ones observed for inflammatory cells. We conclude that skin inflammation and skin blood vessel density is increased in diabetic human subjects and in rodent and rabbit models of diabetes

    Mast cells regulate wound healing in diabetes

    No full text
    Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.05). Conversely, postwounding MC degranulation increases in nondiabetic mice, but not in diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P < 0.05). Nevertheless, nondiabetic and diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes
    corecore