2 research outputs found

    The Protective Potential Role of ACE2 against COVID-19

    Full text link
    Due to the coronavirus disease 2019 (COVID-19), researchers all over the world have tried to find an appropriate therapeutic approach for the disease. The angiotensin-converting enzyme 2 (ACE2) has been shown as a necessary receptor to cell fusion, which is involved in infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is commonly crucial for all organs and systems. When ACE2 is downregulated via the SARS-CoV-2 spike protein, it results in the angiotensin II (Ang II)/angiotensin type 1 receptor axis overactivation. Ang II has harmful effects, which can be evidenced by dysfunctions in many organs experienced by COVID-19 patients. ACE2 is the SARS-CoV-2 receptor and has an extensive distribution; thus, some COVID-19 cases experience several symptoms and complications. We suggest strategy for the potential protective effect of ACE2 to the viral infection. The current review will provide data to develop new approaches for preventing and controlling the COVID-19 outbreak

    Tenocyte-imprinted substrate: a topography-based inducer for tenogenic differentiation in adipose tissue-derived mesenchymal stem cells

    Full text link
    Tendon tissue engineering based on stem cell differentiation has attracted a great deal of attention in recent years. Previous studies have examined the effect of cell-imprinted polydimethylsiloxane (PDMS) substrate on induction differentiation in stem cells. In this study, we used tenocyte morphology as a positive mold to create a tenocyte-imprinted substrate on PDMS. The morphology and topography of this tenocyte replica on PDMS was evaluated with scanning electron microscopy (SEM) and atomic force microscopy. The tenogenic differentiation induction capacity of the tenocyte replica in adipose tissue-derived mesenchymal stem cells (ADSCs) was then investigated and compared with other groups, including tissue replica (which was produced similarly to the tenocyte replica and was evaluated by SEM), decellularized tendon, and bone morphogenic protein (BMP)-12, as other potential inducers. This comparison gives us an estimate of the ability of tenocyte-imprinted PDMS (called cell replica in the present study) to induce differentiation compared to other inducers. For this reason, ADSCs were divided into five groups, including control, cell replica, tissue replica, decellularized tendon and BMP-12. ADSCs were seeded on each group separately and investigated by the real-time reverse transcription polymerase chain reaction (RT-PCR) technique after seven and 14 days. Our results showed that in spite of the higher effect of the growth factor on tenogenic differentiation, the cell replica can also induce tenocyte marker expression (scleraxis and tenomodulin) in ADSCs. Moreover, the tenogenic differentiation induction capacity of the cell replica was greater than tissue replica. Immunocytochemistry analysis revealed that ADSCs seeding on the cell replica for 14 days led to scleraxis and tenomodulin expression at the protein level. In addition, immunohistochemistry indicated that contrary to the promising results in vitro, there was little difference between ADSCs cultured on tenocyte-imprinted PDMS and untreated ADSCs. The results of such studies could lead to the production of inexpensive cell culture plates or biomaterials that can induce differentiation in stem cells without growth factors or other supplements. © 2020 IOP Publishing Ltd
    corecore