24 research outputs found
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study
Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
Cinnamon Aqueous Extract Attenuates Diclofenac Sodium and Oxytetracycline Mediated Hepato-Renal Toxicity and Modulates Oxidative Stress, Cell Apoptosis, and Inflammation in Male Albino Rats
Among commonly consumed anti-inflammatory and antimicrobial drugs are diclofenac sodium (DFS) and oxytetracycline (OTC), especially in developing countries because they are highly effective and cheap. However, the concomitant administration of anti-inflammatory drugs with antibiotics may exaggerate massive toxic effects on many organs. Cinnamon (Cinnamomum zeylanicum, Cin) is considered one of the most broadly utilized plants with various antioxidant and anti-inflammatory actions. This study aimed to evaluate the possible protective effects of cinnamon aqueous extract (Cin) against DFS and OTC hepato-renal toxicity. Eight groups (8/group) of adult male albino rats were treated orally for 15 days with physiological saline (control), Cin aqueous extract (300 mg/kg b.w.), OTC (200 mg/kg b.w.), single dose of DFS at the 14th day (100 mg/kg b.w.), DFS + OTC, Cin + DFS, Cin + OTC, and Cin + DFS + OTC. The administration of DFS and/or OTC significantly increased (p < 0.05) the serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea, creatinine, and uric acid. Serum levels of pro-inflammatory cytokines, as well as hepatic and renal malondialdehyde and nitric oxide metabolites, were also raised following DFS and OTC administration. Meanwhile, the activities of reduced glutathione, superoxide dismutase, and catalase in liver and kidney were significantly suppressed in DFS, OTC, and DFS + OTC treated rats. Moreover, hepatic and renal tissue sections from these rats exhibited overexpression of caspase-3 and cyclooxygenase-II on immunohistochemical investigation. The administration of Cin aqueous extract ameliorated the aforementioned deteriorations caused by DFS, OTC, and their combination. Conclusively, Cin is a promising protective plant extract capable of attenuating the oxidative damage, apoptosis, and inflammation induced by DFS and OTC either alone or combined, on hepatic and renal tissues
Table_1_Antagonism of cadmium-induced liver injury in ducks by α-bisabolol.docx
Cadmium (Cd) is an ecological pollutant which causes hazardous effects in animals and humans. The aim of this study was to investigate the role of α-bisabolol (BISA) in antagonizing the Cd-induced hepatotoxicity in ducks. Two-week old ducks were allocated into 8 groups (10 ducks/group): Group I received basal diet and was gavaged with sunflower oil (BISA vehicle, 1.1 mL/kg/day); group II was administered BISA orally (50 mg/kg/day; diluted with sunflower oil); groups III, IV, and V were fed the basal diet mixed with CdCl2 at 37.5, 75, and 150 mg/kg diet, respectively, and were gavaged with sunflower oil; group VI, VII, and VIII were given basal diet containing CdCl2 at the aforementioned consecutive doses plus BISA. All treatments were provided daily for 4 weeks. Exposure to CdCl2 induced mortality in ducks, increased hepatic Cd content and serum levels of hepatopathic biomarkers, and caused oxidative stress and morphological alterations in ducks' liver. Furthermore, exposure to Cd caused upregulation of the mRNA of proinflammatory cytokine tumor necrosis factor-α and apoptotic gene Bax, and that of cyclooxygenase-2 protein in the liver. All effects of Cd were dose-dependent. BISA antagonized all of the aforementioned CdCl2-induced changes. These findings suggested that BISA exert the hepatoprotective effect against Cd toxicity through reducing the hepatic content of Cd as well as antagonizing oxidative insults, inflammation, and apoptosis. Thus, BISA has a great potential to be used as an antidote in the control of Cd poisoning.</p
Cinnamon Extract and Probiotic Supplementation Alleviate Copper-Induced Nephrotoxicity via Modulating Oxidative Stress, Inflammation, and Apoptosis in Broiler Chickens
The present study aimed to assess the potential protective effects of cinnamon (Cinnamomum zeylanicum, Cin) and probiotic against CuSO4-induced nephrotoxicity in broiler chickens. One-day-old Cobb chicks were assigned into seven groups (15 birds/group): control group, fed basal diet; Cin group, fed the basal diet mixed with Cin (200 mg/kg); PR group, receiving PR (1 g/4 L water); Cu group, fed the basal diets mixed with CuSO4 (300 mg/kg); Cu + Cin group; Cu + PR group; and Cu + Cin + PR group. All treatments were given daily for 6 weeks. Treatment of Cu-intoxicated chickens with Cin and/or PR reduced (p < 0.05) Cu contents in renal tissues and serum levels of urea, creatinine, and uric acid compared to the Cu group. Moreover, Cin and PR treatment decreased lipid peroxidation and increased antioxidant enzyme activities in chickens’ kidney. Additionally, significant reduction (p < 0.05) in the mRNA expression of tumor necrosis factor alpha (TNF-α), interleukin (IL-2) and Bax, and in cyclooxygenase (COX-II) enzyme expression, and significant elevation (p < 0.05) in mRNA expression of IL-10 and Bcl-2 were observed in kidneys of Cu + Cin, Cu + PR, and Cu + Cin + PR groups compared to Cu group. Conclusively, Cin and/or PR afford considerable renal protection against Cu-induced nephrotoxicity in chickens
Should Airway Interstitial Fluid Be Used to Evaluate the Pharmacokinetics of Macrolide Antibiotics for Dose Regimen Determination in Respiratory Infection?
Macrolide antibiotics are important drugs to combat infections. The pharmacokinetics (PK) of these drugs are essential for the determination of their optimal dose regimens, which affect antimicrobial pharmacodynamics and treatment success. For most drugs, the measurement of their concentrations in plasma/serum is the surrogate for drug concentrations in target tissues for therapy. However, for macrolides, simple reliance on total or free drug concentrations in serum/plasma might be misleading. The macrolide antibiotic concentrations of serum/plasma, interstitial fluid (ISF), and target tissue itself usually yield very different PK results. In fact, the PK of a macrolide antibiotic based on serum/plasma concentrations alone is not an ideal predictor for the in vivo efficacy against respiratory pathogens. Instead, the PK based on drug concentrations at the site of infection or ISF provide much more clinically relevant information than serum/plasma concentrations. This review aims to summarize and compare/discuss the use of drug concentrations of serum/plasma, airway ISF, and tissues for computing the PK of macrolides. A better understanding of the PK of macrolide antibiotics based on airway ISF concentrations will help optimize the antibacterial dose regimen as well as minimizing toxicity and the emergence of drug resistance in clinical practice
Cyanidin Stimulates Insulin Secretion and Pancreatic β-Cell Gene Expression through Activation of l-type Voltage-Dependent Ca2+ Channels
Cyanidin is a natural anthocyanidin present in fruits and vegetables with anti-diabetic properties including stimulation of insulin secretion. However, its mechanism of action remains unknown. In this study, we elucidated the mechanisms of cyanidin for stimulatory insulin secretion from pancreatic β-cells. Rat pancreatic β-cells INS-1 were used to investigate the effects of cyanidin on insulin secretion, intracellular Ca2+ signaling, and gene expression. We detected the presence of cyanidin in the intracellular space of β-cells. Cyanidin stimulated insulin secretion and increased intracellular Ca2+ signals in a concentration-dependent manner. The Ca2+ signals were abolished by nimodipine, an l-type voltage-dependent Ca2+ channel (VDCC) blocker or under extracellular Ca2+ free conditions. Stimulation of cells with cyanidin activated currents typical for VDCCs and up-regulated the expression of glucose transporter 2 (GLUT2), Kir6.2, and Cav1.2 genes. Our findings indicate that cyanidin diffuses across the plasma membrane, leading to activation of l-type VDCCs. The increase in intracellular Ca2+ stimulated insulin secretion and the expression of genes involved in this process. These findings suggest that cyanidin could be used as a promising agent to stimulate insulin secretion
Mycorrhizal colonization and Streptomyces viridosporus HH1 synergistically up-regulate the polyphenol biosynthesis genes in wheat against stripe rust
Abstract Background Stripe rust is considered one of the most devastating diseases of wheat all over the world, resulting in a high loss in its production. In this study, time-course changes in expression of the polyphenol biosynthesis pathways genes in wheat against stripe rust were investigated. The defense mechanisms triggered by mycorrhizal colonization and/or spraying with Streptomyces viridosporus HH1 against this disease were also investigated. Results Results obtained revealed that C3H, which is considered the key gene in lignin biosynthesis, was the most expressed gene. Furthermore, most of the chlorogenic acid and flavonoid biosynthesis genes were also overexpressed. Volcano plots of the studied genes reveal that the dual treatment led to a high significant overexpression of 10 out of the 13 studied genes. Heatmap of these genes showed that the most frequent expressed gene in response to all applied treatments along the study period was DFR, the key gene in the biosynthesis of anthocyanidins. Gene co-expression network of the studied genes showed that HQT was the most central gene with respect to the other genes, followed by AN2 and DFR, respectively. Accumulation of different flavonoids and phenolic acids were detected in response to the dual treatment, in particular, cinnamic acid, coumarin, and esculetin, which recorded the highest elevation level recording 1000, 488.23, and 329.5% respectively. Furthermore, results from the greenhouse experiment showed that application of the dual treatment led to an 82.8% reduction in the disease severity, compared with the control treatment. Conclusions We can conclude that the biosynthesis of lignin, chlorogenic acid, and flavonoids contributed to the synergistic triggering effect of the dual treatment on wheat resistance to stripe rust
Immunomodulating Effect of Echinacea and Star Anise in Protection and Treatment of Infectious Bronchitis Virus in Poultry
This study was carried out to evaluate the effect of two medicinal plants: Echinacea Purpura and Star anise for treating and prevention of infectious bronchitis virus (IBV) in chickens via assessment of their immune stimulating effect in IBV challenged chicks. 160 one day old Cobb® unsexed broiler chicks with average body weight 46.3 g. Chicks were classified into 8 equal groups (20 of each). The 1st group served as a control negative, the 2nd group served as a control positive (infected with IBV virus at day 21, non- treated), the 3rd group received Echinacea from the 7th till 21st day and infected with IBV virus at day 21, the 4th group received Star anise from the 7th till 21st day and infected with IBV virus at day 21, the 5th group received both Echinacea and Star anise from the 7th till 21st day and infected with IBV virus at day 21, the 6th group infected with IBV virus at day 21, then received Echinacea from the 21st till 42nd, the 7th group infected with IBV virus at day 21then received star anise from the 21st till 42nd, and the 8thgroup infected with IBV virus at day 21, then received both Echinacea and Star anise from the 21st till 42nd. Estimation of the collected samples (blood and sera) were made at different periods (7th, 14th, 28th and 35th days) to determine the effects of the used drugs on some hematological, and biochemical parameters. In addition, tissue specimens from liver and trachea were taken for histopathological examination. The obtained results evoked a significant increase in WBCs, heterophiles, lymphocytes, monocytes and esinophils counts in the groups treated with Echinacea and star anise compared with that of the control group. Serum ALT, AST, serum urea and creatinine results revealed a significant increase in groups treated with Echinacea and star anise compared with the control group, while GSH, SOD and NO revealed decrease in groups treated with Echinacea and star anise compared with the control group. It could be concluded that the use of Echinacea and star anise as antivirals is positively beneficial in prevention and treatment of infectious bronchitis virus in poultry. Moreover, the use of the combination of both plants when used together have more powerful effects in the prevention and treatment of IBV in poultry