9 research outputs found
Integrated genomics of ovarian xenograft tumor progression and chemotherapy response
<p>Abstract</p> <p>Background</p> <p>Ovarian cancer is the most deadly gynecological cancer with a very poor prognosis. Xenograft mouse models have proven to be one very useful tool in testing candidate therapeutic agents and gene function <it>in vivo</it>. In this study we identify genes and gene networks important for the efficacy of a pre-clinical anti-tumor therapeutic, MT19c.</p> <p>Methods</p> <p>In order to understand how ovarian xenograft tumors may be growing and responding to anti-tumor therapeutics, we used genome-wide mRNA expression and DNA copy number measurements to identify key genes and pathways that may be critical for SKOV-3 xenograft tumor progression. We compared SKOV-3 xenografts treated with the ergocalciferol derived, MT19c, to untreated tumors collected at multiple time points. Cell viability assays were used to test the function of the PPARγ agonist, Rosiglitazone, on SKOV-3 cell growth.</p> <p>Results</p> <p>These data indicate that a number of known survival and growth pathways including Notch signaling and general apoptosis factors are differentially expressed in treated vs. untreated xenografts. As tumors grow, cell cycle and DNA replication genes show increased expression, consistent with faster growth. The steroid nuclear receptor, PPARγ, was significantly up-regulated in MT19c treated xenografts. Surprisingly, stimulation of PPARγ with Rosiglitazone reduced the efficacy of MT19c and cisplatin suggesting that PPARγ is regulating a survival pathway in SKOV-3 cells. To identify which genes may be important for tumor growth and treatment response, we observed that MT19c down-regulates some high copy number genes and stimulates expression of some low copy number genes suggesting that these genes are particularly important for SKOV-3 xenograft growth and survival.</p> <p>Conclusions</p> <p>We have characterized the time dependent responses of ovarian xenograft tumors to the vitamin D analog, MT19c. Our results suggest that PPARγ promotes survival for some ovarian tumor cells. We propose that a combination of regulated expression and copy number can identify genes that are likely important for chemotherapy response. Our findings suggest a new approach to identify candidate genes that are critical for anti-tumor therapy.</p
A Systems Biology Approach Reveals the Role of a Novel Methyltransferase in Response to Chemical Stress and Lipid Homeostasis
Using small molecule probes to understand gene function is an attractive approach that allows functional characterization of genes that are dispensable in standard laboratory conditions and provides insight into the mode of action of these compounds. Using chemogenomic assays we previously identified yeast Crg1, an uncharacterized SAM-dependent methyltransferase, as a novel interactor of the protein phosphatase inhibitor cantharidin. In this study we used a combinatorial approach that exploits contemporary high-throughput techniques available in Saccharomyces cerevisiae combined with rigorous biological follow-up to characterize the interaction of Crg1 with cantharidin. Biochemical analysis of this enzyme followed by a systematic analysis of the interactome and lipidome of CRG1 mutants revealed that Crg1, a stress-responsive SAM-dependent methyltransferase, methylates cantharidin in vitro. Chemogenomic assays uncovered that lipid-related processes are essential for cantharidin resistance in cells sensitized by deletion of the CRG1 gene. Lipidome-wide analysis of mutants further showed that cantharidin induces alterations in glycerophospholipid and sphingolipid abundance in a Crg1-dependent manner. We propose that Crg1 is a small molecule methyltransferase important for maintaining lipid homeostasis in response to drug perturbation. This approach demonstrates the value of combining chemical genomics with other systems-based methods for characterizing proteins and elucidating previously unknown mechanisms of action of small molecule inhibitors
STAMS: STRING-assisted module search for genome wide association studies and application to autism
Analyzing genome wide association data in the context of biological pathways helps us understand how genetic variation influences phenotype and increases power to find associations. However, the utility of pathway-based analysis tools is hampered by undercuration and reliance on a distribution of signal across all of the genes in a pathway. Methods that combine genome wide association results with genetic networks to infer the key phenotype-modulating subnetworks combat these issues, but have primarily been limited to network definitions with yes/no labels for gene-gene interactions. A recent method (EW_dmGWAS) incorporates a biological network with weighted edge probability by requiring a secondary phenotype-specific expression dataset. In this article, we combine an algorithm for weighted-edge module searching and a probabilistic interaction network in order to develop a method, STAMS, for recovering modules of genes with strong associations to the phenotype and probable biologic coherence. Our method builds on EW_dmGWAS but does not require a secondary expression dataset and performs better in six test cases. We show that our algorithm improves over EW_dmGWAS and standard gene-based analysis by measuring precision and recall of each method on separately identified associations. In the Wellcome Trust Rheumatoid Arthritis study, STAMS-identified modules were more enriched for separately identified associations than EW_dmGWAS (STAMS P-value 3.0 × 10(-4); EW_dmGWAS- P-value = 0.8). We demonstrate that the area under the Precision-Recall curve is 5.9 times higher with STAMS than EW_dmGWAS run on the Wellcome Trust Type 1 Diabetes data. STAMS is implemented as an R package and is freely available at https://simtk.org/projects/stams CONTACT: [email protected] information: Supplementary data are available at Bioinformatics onlin