8 research outputs found

    Detection and Identification of Anomalies in Wireless Mesh Networks Using Principal Component Analysis (PCA)

    No full text
    Anomaly detection is becoming a powerful and necessary component as wireless networks gain popularity. In this paper, we evaluate the efficacy of PCA based anomaly detection for wireless mesh networks. PCA was originally developed for wired networks. Our experiments show that it is possible to detect different types of anomalies in an interference prone wireless environment. However, the sensitivity of PCA to small changes in flows prompted us to develop an anomaly identification scheme which automatically identifies the flow(s) causing the detected anomaly and their contributions in terms of number of packets. Our results show that the identification scheme is able to differentiate false alarms from real anomalies and pinpoint the culprit(s) in case of a real fault or threat. The experiments were performed over an 8 node mesh testbed deployed in an urban street layout in Sydney, under different realistic traffic scenarios. Our identification scheme facilitates the use of PCA based method for real-time anomaly detection in wireless networks as it can filter the false alarms locally at the monitoring nodes without excessive computational overhead

    Discovery and Biochemical Characterization of PlyP56, PlyN74, and PlyTB40—Bacillus Specific Endolysins

    No full text
    Three Bacillus bacteriophage-derived endolysins, designated PlyP56, PlyN74, and PlyTB40, were identified, cloned, purified, and characterized for their antimicrobial properties. Sequence alignment reveals these endolysins have an N-terminal enzymatically active domain (EAD) linked to a C-terminal cell wall binding domain (CBD). PlyP56 has a Peptidase_M15_4/VanY superfamily EAD with a conserved metal binding motif and displays biological dependence on divalent ions for activity. In contrast, PlyN74 and PlyTB40 have T7 lysozyme-type Amidase_2 and carboxypeptidase T-type Amidase_3 EADs, respectively, which are members of the MurNAc-LAA superfamily, but are not homologs and thus do not have a shared protein fold. All three endolysins contain similar SH3-family CBDs. Although minor host range differences were noted, all three endolysins show relatively broad antimicrobial activity against members of the Bacillus cereus sensu lato group with the highest lytic activity against B. cereus ATCC 4342. Characterization studies determined the optimal lytic activity for these enzymes was at physiological pH (pH 7.0–8.0), over a broad temperature range (4–55 °C), and at low concentrations of NaCl (<50 mM). Direct comparison of lytic activity shows the PlyP56 enzyme to be twice as effective at lysing the cell wall peptidoglycan as PlyN74 or PlyTB40, suggesting PlyP56 is a good candidate for further antimicrobial development as well as bioengineering studies

    New perspectives for fascioliasis in Upper Egypt’s new endemic region: Sociodemographic characteristics and phylogenetic analysis of Fasciola in humans, animals, and lymnaeid vectors

    No full text
    Background Fascioliasis is a significant vector-borne disease that has emerged in numerous tropical and subtropical countries causing severe health problems. Egypt is one of the fascioliasis endemic regions; however, the current situation in Upper Egypt is understudied, with only sporadic human cases or outbreaks. This study aims to highlight the sociodemographic characteristics of human fascioliasis in a newly emerged endemic area in Upper Egypt, along with risk factors analysis and the molecular characteristics of the fasciolid population in humans, animals, and lymnaeid snails. Methodology/Principal findings The study reported Fasciola infection in patients and their close relatives by analyzing the risk of human infection. Morphological and molecular characterization was performed on lymnaeid snails. Multigene sequencing was also used to characterize fasciolids from human cases, cattle, and pooled snail samples. The study identified asymptomatic Fasciola infection among family members and identified the presence of peridomestic animals as a significant risk factor for infection. This is the first genetic evidence that Radix auricularia exists as the snail intermediate host in Egypt. Conclusions/Significance This study revealed that Assiut Governorate in Upper Egypt is a high-risk area for human fascioliasis that requires additional control measures. Fasciola hepatica was the main causative agent infecting humans and snail vectors in this newly emerged endemic area. In addition, this is the first report of R. auricularia as the snail intermediate host transmitting fascioliasis in Upper Egypt. Further research is required to clarify the widespread distribution of Fasciola in Egypt’s various animal hosts. This provides insight into the mode of transmission, epidemiological criteria, and genetic diversity of fasciolid populations in Upper Egypt.\ Author summary Human fascioliasis is a freshwater snail-transmitted disease that is widely distributed in many tropical and subtropical countries including Egypt. Recently, Upper Egypt reported sporadic cases of human fascioliasis and a few outbreaks establishing a new endemic area. This study was conducted to get information on the sociodemographic characteristics of the infected patients and possible risk factors of infection in this recently emerged endemic region. Further, this study tried to describe lymnaeid intermediate host snails involved in infection transmission morphologically and by molecular analysis. Analysis of the phylogenetic relationships between natural fasciolid populations was performed in humans, animals, and snail isolates by multilocus sequencing. Results indicated that asymptomatic fascioliasis should be screened in areas at risk of infection. Also, younger age groups and the presence of peri domestic animals were significantly associated with an increased risk of infection. This is the first molecular proof of the existence of Radix auricularia snails causing fascioliasis in Egypt. Results showed that Upper Egypt may be an area at risk for human fascioliasis that needs additional control measures
    corecore