25 research outputs found
Bovine Digital Dermatitis: Treponema spp. on trimming equipment and chutes - effect of washing and disinfection
Background Digital dermatitis (DD) is a contagious bovine foot disease causing reduced animal welfare and negative economic consequences for the farmer. Treponema spp. are the most important causative agents. Studies indicate that trimming equipment can transfer DD-associated treponemes between cows. The aim of this observational study in 22 DD-positive Norwegian dairy herds was to investigate the risk of transferring Treponema spp. with trimming equipment and chutes after claw trimming, and after washing and disinfection. Swabs from the trimming equipment and chutes were collected from nine different locations, at five different time points. Bacterial DNA was extracted from 647 swabs and analysed by qPCR for Treponema spp. In addition, 172 swabs taken immediately after trimming, were analysed by a multiplex qPCR targeting T. phagedenis, T. pedis and T. medium/vincentii. Biopsy sampling from DD lesions was performed on cows in the same herds during trimming. Altogether 109 biopsies were analysed by FISH for confirmation of the DD diagnosis and identification of Treponema phylotypes (PTs). Results High numbers of Treponema spp. were detected from all nine locations on the trimming equipment and chutes immediately after trimming, and T. phagedenis was detected on two or more locations in all but two herds, 1 and 19. There was a decline in the amount of Treponema spp. after washing and disinfection. The belly belt, the cuff, and the footrest on the chute had the highest proportion of positive samples after disinfection. The belly belt had the highest copy numbers of all nine locations (median = 7.9, max = 545.1). No Treponema spp. was detected on the hoof knives after disinfection. Treponema phagedenis, T. pedis, and Treponema phylotype 3 (T. refringens) were detected by FISH analysis of the biopsies. Treponema phagedenis was detected in biopsies from all herds except 1 and 19. Conclusion This study shows that DD-associated Treponema spp. were present on the trimming equipment and chutes after trimming cows in DD-positive herds. Washing and disinfection reduced the load of Treponema spp. However, large differences in Treponema spp. between different locations were documented. High copy numbers on the grinder and the chute after disinfection, indicates that sufficient cleaning and disinfection of these locations is difficult, and that passive transfer of DD-associated treponemes (viable or not) is possible
Field Study on the Prevalence of Ovine Footrot, Contagious Ovine Digital Dermatitis, and Their Associated Bacterial Species in Swedish Sheep Flocks
Ovine footrot and contagious ovine digital dermatitis (CODD) cause lameness in sheep, affecting welfare and economics. Previous Swedish studies focused on individual slaughter lambs, leaving flock-wide prevalence less explored. This study examined the prevalence of footrot and CODD in Swedish sheep flocks, focusing on adult sheep. From 99 flocks, 297 swabs were analysed using real-time PCR for Dichelobacter nodosus, Fusobacterium necrophorum, and Treponema spp. Sampled feet were photographed and assessed using scoring systems for footrot and CODD. Results indicated footrot prevalences (footrot score >= 2) of 0.7% and 2.0% at the individual and flock levels, respectively, whereas there were no signs of CODD. The individual footrot prevalence was lower than that from a 2009 study but aligned with a 2020 study, both conducted on slaughter lambs. Dichelobacter nodosus, F. necrophorum, and Treponema spp. were found in 5.7%, 1.3%, and 65.0% of sheep, and in 9.1%, 3.0%, and 82.8% of flocks, respectively. Compared to the 2020 study, there was a notable decrease in F. necrophorum and Treponema spp., while D. nodosus was consistent. In conclusion, the findings show a low prevalence of footrot, CODD, D. nodosus, and F. necrophorum in Swedish sheep flocks. Continuous surveillance and owner education are important to maintain this favourable status
Dichelobacter nodosus and footrot in Swedish sheep
Ovine footrot is a contagious bacterial disease primarily caused by Dichelobacter nodosus. Footrot affects the feet of sheep and is characterised by two major clinical presentations. The milder form consists of inflammation confined to the interdigital space (interdigital dermatitis or benign footrot) and the more severe form includes underrunning of the hoof horn (underrunning or virulent footrot). Disease severity is dependent on several factors including the virulence of the D. nodosus strain, environmental conditions, farming practices, host susceptibility, and co-infecting bacteria.
In Sweden, ovine footrot was first diagnosed in 2004, but fast and sensitive diagnostics for D. nodosus were not available. Likewise, knowledge was missing about the D. nodosus strains and co-infection with other lameness-associated bacteria. Hence the overall aim of this thesis project was to increase the knowledge about ovine footrot in Swedish sheep and to improve laboratory diagnostics for it.
In this thesis project, sensitive and specific real-time PCR methods to detect and discriminate between virulent and benign strains of D. nodosus were developed and used to characterise D. nodosus from Swedish sheep. The results showed that most of the Swedish D. nodosus are benign and that the virulent type is uncommon. D. nodosus isolates from seven other countries included in the study showed that the D. nodosus genome is highly conserved and that it exists as a globally distributed bimodal population. Furthermore, D. nodosus is mainly associated with the early stages of footrot whereas Fusobacterium necrophorum is associated with the later ones. This confirms the suggested role of F. necrophorum as an opportunistic pathogen rather than the primary pathogen. Although previously proposed, there was no evidence of Treponema spp. in disease development. Finally, a sample pooling method was developed to meet the demands for cost-efficiency in control programs. The method allows samples to be analysed in groups of five with no loss of sensitivity compared to individual samples. It has been implemented in the Swedish Footrot Control Program as a result of this thesis project
First report on outbreaks of contagious ovine digital dermatitis in Sweden
Background Contagious ovine digital dermatitis (CODD) is considered widespread in the United Kingdom but was only recently reported in mainland Europe, as one outbreak in Germany. The disease can cause severe lameness in sheep and, if left untreated, can lead to total avulsion of the hoof capsule. CODD is considered to have multifactorial and polymicrobial aetiology, in which Treponema medium/Treponema vincentii phylogroup, Treponema phagedenis phylogroup and Treponema pedis are believed to play a significant role. Footrot and CODD have a close connection and footrot is considered an important risk factor for CODD. Case Lameness, mainly in lambs aged 1.5 months, was reported on a farm in Sweden in spring 2018. The animals showed no signs of footrot and the causative agent, Dichelobacter nodosus, was not found. CODD was suspected but not confirmed, and the clinical signs subsided when the animals were turned out to pasture. In February 2019, young lambs and ewes were lame again and this time CODD was diagnosed. After treatment, the whole flock was slaughtered later in 2019 due to CODD. In autumn 2020, CODD was diagnosed on another Swedish farm, this time as part of a mixed infection with D. nodosus. The animals were treated with footbaths in zinc sulphate 10% by the farmer, but lameness recurred soon afterwards. The animals were treated, but ultimately the whole flock was slaughtered. No connection was found between the two farms. Conclusion The first two outbreaks of CODD in Sweden have been diagnosed and are described in this case report. If it spreads, CODD could have a negative impact on the Swedish sheep industry in terms of animal welfare, production and antibiotic use
Antimicrobial Resistance in Vaginal Bacteria in Inseminated Mares
Antimicrobials are added to semen extenders to inhibit the growth of bacteria that are transferred to the semen during collection. However, this non-therapeutic use of antimicrobials could contribute to the development of antimicrobial resistance. The objective of this study was to determine changes in the antibiotic susceptibility of vaginal microbiota after artificial insemination. Swabs were taken from the vagina of 26 mares immediately before artificial insemination and again 3 days later. Bacteria isolated from the vagina at both time points were subjected to antibiotic susceptibility testing and whole-genome sequencing. In total, 32 bacterial species were identified. There were increases in the resistance of Escherichia coli to trimethoprim (p = 0.0006), chloramphenicol and (p = 0.012) tetracycline (p = 0.03) between day 0 and day 3. However, there was no significant effect of exposure to antibiotics in semen extenders with respect to the resistance of Staphylococcus simulans and Streptococcus equisimilis (p > 0.05). Whole-genome sequencing indicated that most phenotypic resistance was associated with genes for resistance. These results indicate that the resistance patterns of vaginal bacteria may be affected by exposure to antibiotics; therefore, it would be prudent to minimize, or preferably, avoid using antibiotics in semen extenders
Survival of livestock-associated methicillin-resistant Staphylococcus aureus CC398 on different surface materials
Background Zoonotic livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is widely spread in pig herds in many countries. However, the knowledge regarding the survival of LA-MRSA in the pig farm environ-ment is currently limited. The aim of this study was to assess the survival of LA-MRSA on different surface materials found in the farm environment. The study investigated the survival of two different LA-MRSA strains belonging to the clonal complex (CC) 398 on four different surfaces: stainless steel, polypropylene plastic, K30 concrete and commercial concrete disk coupons. The survival of the bacteria over time was determined by the viable count method and, where possible, fitting a model to the observed data by using nonlinear least squares method to calculate the half-life ( t1/2) for different strain and material combinations.Results The study showed that the half-life of the bacteria was longer on polypropylene plastic (t(1/2)=11.08- 15.78 days) than on stainless steel (t(1/2)=2.45-7.83 days). On these materials, both LA-MRSA strains survived through the 14 week observation period. The bacterial decay was fastest on the concrete surfaces, where LA-MRSA became undetectable after 3-9 weeks.Conclusions The survival of LA-MRSA in the pig farm environment may be affected by different surface materials. A more frequent sampling protocol (< 7 days) is needed to determine the half-life on concrete surfaces
Identification of Transmission Routes of Campylobacter and On-Farm Measures to Reduce Campylobacter in Chicken
An in-depth analysis was performed on Swedish broiler producers that had delivered chickens with Campylobacter to slaughter over several years, in order to identify possible transmission routes and formulate effective measures to prevent chickens being colonized with Campylobacter. Between 2017 and 2019, 626 samples were collected at farm level and Campylobacter was isolated from 133 (21.2%). All C. jejuni and C. coli isolated from these samples were whole-genome sequenced, together with isolates from the corresponding cecum samples at slaughter (n = 256). Core genome multi-locus sequence typing (cgMLST) analysis, using schemes consisting of 1140 and 529 genes for C. jejuni and C. coli, respectively, revealed that nearby cattle, contaminated drinking water, water ponds, transport crates, and parent flocks were potential reservoirs of Campylobacter. A novel feature compared with previous studies is that measures were implemented and tested during the work. These contributed to a nationwide decrease in Campylobacter-positive flocks from 15.4% in 2016 to 4.6% in 2019, which is the lowest ever rate in Sweden. To conclude, there are different sources and routes of Campylobacter transmission to chickens from different broiler producers, and individual measures must be taken by each producer to prevent Campylobacter colonization of chickens
Characterisation of Dichelobacter nodosus and detection of Fusobacterium necrophorum and Treponema spp. in sheep with different clinical manifestations of footrot
AbstractThe aim of this study was to determine the proportion of Dichelobacter nodosus, Fusobacterium necrophorum and Treponema spp. in sheep with different clinical manifestations of footrot compared to healthy sheep both at flock and individual level. The second aim was to characterise D. nodosus with respect to virulence, presence of intA gene and the serogroups.Swab samples (n=1000) from footrot-affected (n=10) and healthy flocks (n=10) were analysed for the presence of D. nodosus, F. necrophorum and Treponema spp. by real-time PCR and culturing (D. nodosus only). Dichelobacter nodosus isolates (n=78) and positive swabs (n=474) were analysed by real-time PCR for the aprV2/B2 and the intA genes and by PCR for the fimA gene (isolates only).D. nodosus was more commonly found in flocks affected with footrot than in clinically healthy flocks. A significant association was found between feet with severe footrot lesions and the aprV2 gene and between feet with moderate or no lesions and the aprB2 gene, respectively. F. necrophorum was more commonly found in flocks with footrot lesions than in flocks without lesions. No significant association was found between sheep flocks affected with footrot and findings of Treponema spp. or the intA gene. Benign D. nodosus of six different serogroups was detected in twelve flocks and virulent D. nodosus of serogroup G in one.In conclusion, D. nodosus and F. necrophorum were more commonly found in feet with footrot than in healthy feet. The majority of D. nodosus detected was benign, while virulent D. nodosus was only detected in a single flock
Occurrence of Campylobacter spp. in Swedish calves, common sequence types and antibiotic resistance patterns
Aims Cattle are the second most important cause of human campylobacteriosis, after poultry, but there are knowledge gaps regarding Campylobacter in cattle. This study examined the occurrence of Campylobacter, the species present, sequence types and antibiotic resistance in Swedish cattle.Methods and Results Faeces samples collected from 154 calves on seven Swedish farms, and 69 follow-up samples from a second collection occasion, were analysed. Campylobacter were isolated from 77% of calves at the first sampling, with Campylobacter jejuni as the most frequently isolated species. Animals kept on deep straw bedding were less likely to be colonized with Campylobacter. Whole-genome sequencing of 90 C. jejuni samples resulted in 11 sequence types, among which ST-19 and ST-21 were most frequent. Antimicrobial resistance analyses showed that 46% of 142 isolates analysed were resistant to quinolones, while all isolates belonging to ST-19, ST-22 and ST-441 were resistant to ciprofloxacin and nalidixic acid.Conclusions Campylobacter jejuni was the species most frequently isolated in calves and a strong association was found between sequence type and antimicrobial resistance pattern.Significance and Impact of the Study The high proportion of calves with quinolone-resistant Campylobacter jejuni should be considered in a One Health perspective
Digital dermatitis in Swedish dairy herds assessed by ELISA targeting Treponema phagedenis in bulk tank milk
Background Digital dermatitis (DD) is a contagious hoof infection affecting cattle worldwide. The disease causes lameness and a reduction in animal welfare, which ultimately leads to major decreases in milk production in dairy cattle. The disease is most likely of polymicrobial origin with Treponema phagedenis and other Treponema spp. playing a key role; however, the etiology is not fully understood. Diagnosis of the disease is based on visual assessment of the feet by trained hoof-trimmers and veterinarians, as a more reliable diagnostic method is lacking. The aim of this study was to evaluate the use of an enzyme-linked immunosorbent assay (ELISA) on bulk tank milk samples testing for the presence of T. phagedenis antibodies as a proxy to assess herd prevalence of DD in Swedish dairy cattle herds. Results Bulk tank milk samples were collected in 2013 from 612 dairy herds spread across Sweden. A nationwide DD apparent prevalence of 11.9% (8.1-14.4% CI95%) was found, with the highest proportion of test-positive herds in the South Swedish regions (31.3%; 19.9-42.4% CI95%). Conclusions This study reveals an underestimation of DD prevalence based on test results compared to hoof trimming data, highlighting the critical need for a reliable and accurate diagnostic method. Such a method is essential for disease monitoring and the development of effective control strategies. The novelty of ELISA-based diagnostic methods for DD, coupled with the disease's polymicrobial origin, suggests an avenue for improvement. Developing an expanded ELISA, incorporating antigens from various bacterial species implicated in the disease, could enhance diagnostic accuracy. The significance of this study is underscored by the extensive analysis of a substantial sample size (612). Notably, this investigation stands as the largest assessment to date, evaluating the application of ELISA on bulk tank milk for DD diagnosis at the herd level