2 research outputs found

    Internal Coating of Ureteral Stents with Chemical Vapor Deposition of Parylene

    No full text
    Ureteral balloon catheters and ureteral stents are implanted in large quantities on a daily basis. They are the suspected cause for about a quarter of all the nosocomial infections, which lead to approx. 20,000 deaths in Germany alone. To fight these infections, catheters should be made antibacterial. A technique for an antibacterial coating of catheters exhibiting an aspect ratio of up to 200 consists of a thin silver layer, which is deposited out of an aqueous solution, which is followed by a second step: chemical vapor deposition (CVD) of an organic polymeric film, which moderates the release rate of silver ions. The main concern of the second step is the longitudinal evenness of the film. For tubes with one opening as balloon catheters, this issue can be solved by applying a descendent temperature gradient from the opening to the end of the catheter. An alternative procedure can be applied to commercially available ureteral stents, which exhibit small drainage openings in their middle. The same CVD as before leads to a longitudinal homogeneity of about ±10%—at very low costs. This deposition can be modeled using viscous flow

    Bi-layer sandwich film for antibacterial catheters

    No full text
    Background: Approximately one quarter of all nosocomial infections can be attributed to the urinary tract. The infections are supposed to be mainly caused by implantations of urethral catheters and stents. A new catheter design is introduced with the aim to lower the high number of nosocomial urethral infections. In order to avoid limitations to use, the design is first applied to conventional commercially available balloon catheters.Results: The main feature of the design is a sandwich layer on both sides of the catheter wall, which is composed of a fragmented base layer of silver capped by a thin film of poly(p-xylylene). This top layer is mainly designed to release a controlled amount of Ag+ ions, which is bactericidal, but not toxic to humans. Simultaneously, the lifetime is prolonged to at least one year. The base layer is electrolessly deposited applying Tollens’ reagens, the cap layer is deposited by using chemical vapor deposition.Conclusion: The three main problems of this process, electroless deposition of a fragmented silver film on the surface of an electrically insulating organic polymer, irreproducible evaporation during heating of the precursor, and exponential decrease of the layer thickness along the capillary, have been solved trough the application of a simple electrochemical reaction and two standard principles of physics: Papin’s pot and the principle of Le Chatelier
    corecore