105 research outputs found

    Nutritional Approaches and Gastrointestinal Health and Physiology

    Get PDF

    SCHLAFEN 5 expression correlates with intestinal metaplasia that progresses to gastric cancer

    Get PDF
    Intestinal metaplasia (IM) is a gastric cancer precursor lesion (GCPL) and an extremely high risk factor for progression to gastric cancer (GC). Clinical guidelines recommend that patients with extensive IM undergo a gastroscopy every 3 years. However, protein biomarkers that indicate a transition from IM to GC are lacking. Our group recently identified an interferon-alpha (IFN alpha)-responsive gene, Schlafen 4 (Slfn4), in immune cells that correlates with metaplastic changes in Helicobacter-infected mice. We therefore tested the hypothesis that a human homolog of Slfn4, namely, Schlafen 5 (SLFN5), correlates with progression of GCPL to GC. Jurkat T-lymphoid and HL-60 myeloid cell lines were treated with IFN alpha, and SLFN5 mRNA was quantified by quantitative PCR. SLFN5 protein expression in the inflamed gastric mucosa was co-localized to specific immune cell types by immunohistochemistry using CD20, CD2, and MAC2 antibodies. SLFN5 expression was also determined by immunohistochemistry in formalin-fixed paraffin-embedded samples from individuals with non-atrophic gastritis, atrophic gastritis, complete IM, incomplete IM, and GC, respectively. The IFN alpha treatment of Jurkat and HL-60 cells induced SLFN5 mRNA. SLFN5 protein was expressed mainly by T lymphocytes in inflamed gastric mucosa. The highest level of SLFN5 expression was observed in patients with IM that progressed to GC. Receiver operating characteristic curves demonstrated that correlating SLFN5 expression with the histologic diagnosis of IM significantly increased the probability of identifying patients who may progress to GC. In this study population, elevated SLFN5 protein expression in patients with IM correlated with progression to GC

    The role of dietary fibre in pig production, with a particular emphasis on reproduction

    Get PDF
    Abstract Fibres from a variety of sources are a common constituent of pig feeds. They provide a means to utilise locally-produced plant materials which are often a by-product of the food or drink industry. The value of a high fibre diet in terms of producing satiety has long been recognised. However the addition of fibre can reduce feed intake, which is clearly detrimental during stages of the production cycle when nutrient needs are high, for example in growing piglets and during lactation. More recently, fibre has been found to promote novel benefits to pig production systems, particularly given the reduction in antimicrobial use world-wide, concern for the welfare of animals fed a restricted diet and the need to ensure that such systems are more environmentally friendly. For example, inclusion of dietary fibre can alter the gut microbiota in ways that could reduce the need for antibiotics, while controlled addition of certain fibre types may reduce nitrogen losses into the environment and so reduce the environmental cost of pig production. Of particular potential value is the opportunity to use crude fibre concentrates as ‘functional’ feed additives to improve young pig growth and welfare. Perhaps the greatest opportunity for the use of high fibre diets is to improve the reproductive efficiency of pigs. Increased dietary fibre before mating improves oocyte maturation, prenatal survival and litter size; providing a consumer-acceptable means of increasing the amount of saleable meat produced per sow. The mechanisms responsible for these beneficial effects remain to be elucidated. However, changes in plasma and follicular fluid concentrations of key hormones and metabolites, as well as effects of the hypothalamic satiety centre on gonadotrophin secretion and epigenetic effects are strong candidates
    • …
    corecore