490 research outputs found
Population aging, labor demand, and the structure of wages
One consequence of demographic change is substantial shifts in the age distribution of the working age population. As the baby boom generation ages, the usual historical pattern of there being a high ratio of younger workers relative to older workers is increasingly being replaced by a pattern of there being roughly equal percentages of workers of different ages. One might expect that the increasing relative supply of older workers would lower the wage premium paid for older, more experienced workers. This paper provides strong empirical support for this hypothesis. Econometric estimates imply that the size of one's birth cohort affects wages throughout one's working life, with members of relatively large cohorts (at all stages of their careers) earning a significantly lower wage than members of smaller cohorts. The cohort size effect is of approximately the same magnitude for men and for women. Our results suggest that cohort size effects are quantitatively important and should be incorporated into public policy analyses
A new approach to raising social security's earliest eligibility age
While Social Securityfs Normal Retirement Age (NRA) is increasing to 67, the Earliest Eligibility Age (EEA) remains at 62. Similar plans to increase the EEA raise concerns that they would create excessive hardship on workers who are worn]out or in bad health. One simple rule to increase the EEA is to tie an increase to the number of quarters of covered earnings. Such a provision would allow those with long work lives.presumably the less educated and lower paid.to quit earlier. We provide evidence that this simple rule would not satisfy the goal of preventing undue hardship on certain workers. Therefore, this paper considers an alternative policy that ties an increase in the EEA to individualsf Average Indexed Monthly Earnings (AIME). We show that allowing workers with low AIME to continue to be eligible to receive benefits at age 62 has promise as a policy to protect workers who have low earnings and are in poor health from hardship associated with an increase in the EEA
Far-from-equilibrium Ostwald ripening in electrostatically driven granular powders
We report the first experimental study of cluster size distributions in
electrostatically driven granular submonolayers. The cluster size distribution
in this far-from-equilibrium process exhibits dynamic scaling behavior
characteristic of the (nearly equilibrium) Ostwald ripening, controlled by the
attachment and detachment of the "gas" particles. The scaled size distribution,
however, is different from the classical Wagner distribution obtained in the
limit of a vanishingly small area fraction of the clusters. A much better
agreement is found with the theory of Conti et al. [Phys. Rev. E 65, 046117
(2002)] which accounts for the cluster merger.Comment: 5 pages, to appear in PR
Swelling-collapse transition of self-attracting walks
We study the structural properties of self-attracting walks in d dimensions
using scaling arguments and Monte Carlo simulations. We find evidence for a
transition analogous to the \Theta transition of polymers. Above a critical
attractive interaction u_c, the walk collapses and the exponents \nu and k,
characterising the scaling with time t of the mean square end-to-end distance
~ t^{2 \nu} and the average number of visited sites ~ t^k, are
universal and given by \nu=1/(d+1) and k=d/(d+1). Below u_c, the walk swells
and the exponents are as with no interaction, i.e. \nu=1/2 for all d, k=1/2 for
d=1 and k=1 for d >= 2. At u_c, the exponents are found to be in a different
universality class.Comment: 6 pages, 5 postscript figure
Velocity Distributions of Granular Gases with Drag and with Long-Range Interactions
We study velocity statistics of electrostatically driven granular gases. For
two different experiments: (i) non-magnetic particles in a viscous fluid and
(ii) magnetic particles in air, the velocity distribution is non-Maxwellian,
and its high-energy tail is exponential, P(v) ~ exp(-|v|). This behavior is
consistent with kinetic theory of driven dissipative particles. For particles
immersed in a fluid, viscous damping is responsible for the exponential tail,
while for magnetic particles, long-range interactions cause the exponential
tail. We conclude that velocity statistics of dissipative gases are sensitive
to the fluid environment and to the form of the particle interaction.Comment: 4 pages, 3 figure
Structural Properties of Self-Attracting Walks
Self-attracting walks (SATW) with attractive interaction u > 0 display a
swelling-collapse transition at a critical u_{\mathrm{c}} for dimensions d >=
2, analogous to the \Theta transition of polymers. We are interested in the
structure of the clusters generated by SATW below u_{\mathrm{c}} (swollen
walk), above u_{\mathrm{c}} (collapsed walk), and at u_{\mathrm{c}}, which can
be characterized by the fractal dimensions of the clusters d_{\mathrm{f}} and
their interface d_{\mathrm{I}}. Using scaling arguments and Monte Carlo
simulations, we find that for u<u_{\mathrm{c}}, the structures are in the
universality class of clusters generated by simple random walks. For
u>u_{\mathrm{c}}, the clusters are compact, i.e. d_{\mathrm{f}}=d and
d_{\mathrm{I}}=d-1. At u_{\mathrm{c}}, the SATW is in a new universality class.
The clusters are compact in both d=2 and d=3, but their interface is fractal:
d_{\mathrm{I}}=1.50\pm0.01 and 2.73\pm0.03 in d=2 and d=3, respectively. In
d=1, where the walk is collapsed for all u and no swelling-collapse transition
exists, we derive analytical expressions for the average number of visited
sites and the mean time to visit S sites.Comment: 15 pages, 8 postscript figures, submitted to Phys. Rev.
Experimental investigation on shock wave diffraction over sharp and curved splitters
Shock wave diffraction occurs when a normal travelling wave passes through a sudden area expansion. Turbulent, compressible, and vortical are the characterising adjectives that describe the flow features, which are slowly smeared out due to the dissipative nature of turbulence. The study of this phenomenon provides insight into several flow structures such as shear layer formation, vortex development, and vortex/shock interaction whose applications include noise control, propulsion or wing aerodynamics. A large amount of research has been carried out in the analysis of shock wave diffraction mainly around sharp wedges, but only few studies have considered rounded corners. This project has the aim to examine and compare the flow features which develop around three different geometries, ramp, symmetric and rounded, with experimental incident shock Mach numbers of 1.31 and 1.59, and Reynolds numbers of 1.08×106 and 1.68×106. Schlieren photography is used to obtain qualitative information about the evolution of the flow field. The results show that ramp and symmetrical wedges with a tip angle of 172° behave in the same manner, which exhibit clear dissimilarities with a curved corner. The flow field evolves more rapidly for a higher incoming Mach number which is also responsible for the development of stronger structures
COVID-19 presenting as stroke
© 2020 Elsevier Inc. Objective: Acute stroke remains a medical emergency even during the COVID-19 pandemic. Most patients with COVID-19 infection present with constitutional and respiratory symptoms; while others present with atypical gastrointestinal, cardiovascular, or neurological manifestations. Here we present a series of four patients with COVID-19 that presented with acute stroke. Methods: We searched the hospital databases for patients that presented with acute stroke and concomitant features of suspected COVID-19 infection. All patients who had radiographic evidence of stroke and PCR-confirmed COVID-19 infection were included in the study. Patients admitted to the hospital with PCR- confirmed COVID-19 disease whose hospital course was complicated with acute stroke while inpatient were excluded from the study. Retrospective patient data were obtained from electronic medical records. Informed consent was obtained. Results: We identified four patients who presented with radiographic confirmation of acute stroke and PCR-confirmed SARS-CoV-2 infection. We elucidate the clinical characteristics, imaging findings, and the clinical course. Conclusions: Timely assessment and hyperacute treatment is the key to minimize mortality and morbidity of patients with acute stroke. Stroke teams should be wary of the fact that COVID-19 patients can present with cerebrovascular accidents and should dawn appropriate personal protective equipment in every suspected patient. Further studies are urgently needed to improve current understandings of neurological pathology in the setting of COVID-19 infection
Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array
We present the development of a novel 11328 pixel silicon photomultiplier
(SiPM) camera for use with a ground-based Cherenkov telescope with
Schwarzschild-Couder optics as a possible medium-sized telescope for the
Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower
images with more than twice the optical resolution of cameras that are used in
current Cherenkov telescopes. Advantages of the higher resolution will be a
better event reconstruction yielding improved background suppression and
angular resolution of the reconstructed gamma-ray events, which is crucial in
morphology studies of, for example, Galactic particle accelerators and the
search for gamma-ray halos around extragalactic sources. Packing such a large
number of pixels into an area of only half a square meter and having a fast
readout directly attached to the back of the sensors is a challenging task. For
the prototype camera development, SiPMs from Hamamatsu with through silicon via
(TSV) technology are used. We give a status report of the camera design and
highlight a number of technological advancements that made this development
possible.Comment: 8 pages, 5 figures, In Proceedings of the 34th International Cosmic
Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions
at arXiv:1508.0589
- …