2 research outputs found

    Study on water and gas permeation characteristics with ZIF-8 mixed matrix membranes

    No full text
    The membrane separation process lacks intrinsic permeation characteristics to compete with other separation technologies like adsorption, sedimentation, coagulation, skimming, and distillation. A mixed matrix membrane (MMM) is one of the strategies to improve the separation characteristics with embedded nanofillers particles. Zeolite imidazolate framework (ZIF) has a new subclass of inorganic–organic hybrid materials that are being introduced as new fillers for incorporation into the polymer matrix for various applications such as oily wastewater separation, wastewater treatment, natural gas dehydration, landfill gas upgrading, and mixed gas separation. In this experimental work, a metal-organic framework called ZIF-8 was synthesized and used as a filler for modification of MMMs and characterized with FTIR and SEM. ZIF-8 nanoparticles up to 5 wt% loading were added to PSF casting solution then the permeation characteristics of MMMs showed an improved result like the pure water flux of the modified membrane at 2.5 bar was increased up to 456.38 L/m2h. In the case of pure gas separation, at 5 wt% ZIF-8 loading in PSF, the pure gas CO2 permeability at 9 bar pressure had increased to 10.54 barrer. HIGHLIGHTS We have studied water and gas permeation characteristics incorporated with ZIF-8 containing mixed matrix membranes.; ZIF-8 was made as a gateway for quick transport of CO2 gas molecules and water molecules through the polymer matrix.; As per the observed results, higher permeability of the MMMs can be possible with higher loading of ZIF-8.

    Ultrafiltration study of the polysulfone membrane modified with branched polyethyleneimine

    No full text
    This work discussed the fabrication of polysulfone (PSF) ultrafiltration membranes with hydrophilic behaviour by adding branched polyethyleneimine (PEI) as an additive. By directly blending the base polymer and the additive in the organic solvent, the casting solution is prepared. An asymmetric ultrafiltration membrane was fabricated by the phase inversion method. The presence of PEI was confirmed by comparing the IR spectra of the plain PSF membrane and the modified PSF membrane. A scanning electron microscope was used for the comparison of morphological changes in plain and modified membranes. The membrane was characterised with respect to bovine serum albumin (BSA) adsorption, pure water flux, permeability, compaction factor, humic acid (HA) rejection, and water uptake. The fouling resistance behaviour is prompted due to the presence of hydrophilic PEI chains in the membrane. As a result, pure water flux and flux recovery ratio increased from 28.84 to 326.54 L/m2h and from 0.526 to 0.954 L/m2hkPa for the modified membrane with respect to the plain membrane, respectively. HIGHLIGHTS Polysulfone (PSF) ultrafiltration membranes with hydrophilic behaviour by adding the polyethyleneimine branched (PEI) as an additive were fabricated.; High percentage of HA rejection was achieved with good antifouling properties.; BSA adsorption also decreased with respect to the weight percentage of PEI.
    corecore