13 research outputs found
Diagnosis and Prognostication of Ductal Adenocarcinomas of the Pancreas Based on Genome-Wide DNA Methylation Profiling by Bacterial Artificial Chromosome Array-Based Methylated CpG Island Amplification
To establish diagnostic criteria for ductal adenocarcinomas of the pancreas (PCs), bacterial artificial chromosome (BAC) array-based methylated CpG island amplification was performed using 139 tissue samples. Twelve BAC clones, for which DNA methylation status was able to discriminate cancerous tissue (T) from noncancerous pancreatic tissue in the learning cohort with a specificity of 100%, were identified. Using criteria that combined the 12 BAC clones, T-samples were diagnosed as cancers with 100% sensitivity and specificity in both the learning and validation cohorts. DNA methylation status on 11 of the BAC clones, which was able to discriminate patients showing early relapse from those with no relapse in the learning cohort with 100% specificity, was correlated with the recurrence-free and overall survival rates in the validation cohort and was an independent prognostic factor by multivariate analysis. Genome-wide DNA methylation profiling may provide optimal diagnostic markers and prognostic indicators for patients with PCs
Genome-wide DNA methylation profiles in both precancerous conditions and clear cell renal cell carcinomas are correlated with malignant potential and patient outcome
To clarify genome-wide DNA methylation profiles during multistage renal carcinogenesis, bacterial artificial chromosome array-based methylated CpG island amplification (BAMCA) was performed. Non-cancerous renal cortex tissue obtained from patients with clear cell renal cell carcinomas (RCCs) (N) was at the precancerous stage where DNA hypomethylation and DNA hypermethylation on multiple bacterial artificial chromosome (BAC) clones were observed. By unsupervised hierarchical clustering analysis based on BAMCA data for their N, 51 patients with clear cell RCCs were clustered into two subclasses, Clusters AN (n = 46) and BN (n = 5). Clinicopathologically aggressive clear cell RCCs were accumulated in Cluster BN, and the overall survival rate of patients in Cluster BN was significantly lower than that of patients in Cluster AN. By unsupervised hierarchical clustering analysis based on BAMCA data for their RCCs, 51 patients were clustered into two subclasses, Clusters AT (n = 43) and BT (n = 8). Clinicopathologically aggressive clear cell RCCs were accumulated in Cluster BT, and the overall survival rate of patients in Cluster BT was significantly lower than that of patients in Cluster AT. Multivariate analysis revealed that belonging to Cluster BT was an independent predictor of recurrence. Cluster BN was completely included in Cluster BT, and the majority of the BAC clones that significantly discriminated Cluster BN from Cluster AN also discriminated Cluster BT from Cluster AT. In individual patients, DNA methylation status in N was basically inherited by the corresponding clear cell RCC. DNA methylation alterations in the precancerous stage may generate more malignant clear cell RCCs and determine patient outcome
Photodynamic inactivation of oral bacteria with silver nanoclusters/rose bengal nanocomposite
Antimicrobial photodynamic therapy (a-PDT) is a promising anti-infective technique for generation of singlet oxygen (1O2) to target dental disease. However, conventional organic photosensitizers have problems for clinical use in terms of cytotoxicity, quenching of a-PDT activity by self-dimerization, and the lack of long-term antibacterial effect. We herein propose silver nanoclusters/rose bengal nanocomposite (AgNCs/RB) as a novel photosensitizer with two primary antibacterial effects: (1) 1O2 generation by irradiated RB and (2) Ag+ ion release from AgNCs. AgNCs/RB irradiated with white light-emitting diode (LED) for a short irradiation time of 1 min significantly decreased the bacterial turbidity of Streptococcus mutans, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans (P < 0.05). In SEM, TEM and LIVE/DEAD staining images, photoexcited AgNCs/RB reduced S. mutans colonization, destroyed the cell membrane, and increased the number of dead cells. The antibacterial efficiency of photoexcited AgNCs/RB was greater than that of AgNCs or RB alone (P < 0.05), suggesting a synergistic effect of 1O2 and Ag+ ions from photoexcited AgNCs/RB. By contrast, photoexcited AgNCs/RB did not affect WST-8 and LDH activities and morphology of NIH3T3 mammalian cells, indicating low cytotoxicity. Interestingly, the antibacterial activity of AgNCs/RB on S. mutans was maintained even after the cessation of LED irradiation, indicating a long-term antibacterial effect due to released Ag+ ions. The present AgNCs/RB photosensitizers provide effective synergistic antibacterial effects for dental a-PDT via 1O2 and Ag+ ions coupled with low cytotoxicity
Antimicrobial photodynamic activity and cytocompatibility of Au25(Capt)18 clusters photoexcited by blue LED light irradiation
Antimicrobial photodynamic therapy (aPDT) has beneficial effects in dental treatment. We applied captopril-protected gold (Au25(Capt)18) clusters as a novel photosensitizer for aPDT. Photoexcited Au clusters under light irradiation generated singlet oxygen (1O2). Accordingly, the antimicrobial and cytotoxic effects of Au25(Capt)18 clusters under dental blue light-emitting diode (LED) irradiation were evaluated. 1O2 generation of Au25(Capt)18 clusters under blue LED irradiation (420–460 nm) was detected by a methotrexate (MTX) probe. The antimicrobial effects of photoexcited Au clusters (0, 5, 50, and 500 μg/mL) on oral bacterial cells, such as Streptococcus mutans, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis, were assessed by morphological observations and bacterial growth experiments. Cytotoxicity testing of Au clusters and blue LED irradiation was then performed against NIH3T3 and MC3T3-E1 cells. In addition, the biological performance of Au clusters (500 μg/mL) was compared to an organic dye photosensitizer, methylene blue (MB; 10 and 100 μg/mL). We confirmed the 1O2 generation ability of Au25(Capt)18 clusters through the fluorescence spectra of oxidized MTX. Successful application of photoexcited Au clusters to aPDT was demonstrated by dose-dependent decreases in the turbidity of oral bacterial cells. Morphological observation revealed that application of Au clusters stimulated destruction of bacterial cell walls and inhibited biofilm formation. Aggregation of Au clusters around bacterial cells was fluorescently observed. However, photoexcited Au clusters did not negatively affect the adhesion, spreading, and proliferation of mammalian cells, particularly at lower doses. In addition, application of Au clusters demonstrated significantly better cytocompatibility compared to MB. We found that a combination of Au25(Capt)18 clusters and blue LED irradiation exhibited good antimicrobial effects through 1O2 generation and biosafe characteristics, which is desirable for aPDT in dentistry
Antibacterial and Antibiofilm Photodynamic Activities of Lysozyme-Au Nanoclusters/Rose Bengal Conjugates
Antibacterial photodynamic therapy (aPDT) utilizes reactive oxygen species such as singlet oxygen (1O2) and free radicals via photosensitizers, which are light and light-sensitive agents, to reduce bacterial infections. It has been utilized as a treatment for dental diseases in place of antibiotic therapies. However, aPDT does not always cause the desired therapeutic effect due to the instability of organic photosensitizers and the formation of bacterial biofilms. To promote the antibacterial and antibiofilm effects of aPDT, we have proposed a lysozyme (Lys)-gold nanoclusters (Au NCs)/rose bengal (Lys-Au NCs/RB) conjugate as a novel photosensitizer. This conjugate was found to effectively impede the growth of both gram-positive and gram-negative bacteria when exposed to white light-emitting diode (LED) irradiation. The photoexcited Lys-Au NCs/RB showed significantly higher antibacterial activity than photoexcited Lys-Au NCs or RB alone. The synergistic effect is a result of the combination of Lys (an antibacterial protein) and enhanced 1O2 generation related to resonance energy transfer (RET) in the Au NCs/RB conjugate. Photoexcited Lys-Au NCs/RB increased the effects of aPDT in a dose- and time-dependent manner. Furthermore, the photoexcited Lys-Au NCs/RB successfully decreased Streptococcus mutans biofilm formation. However, in contrast, it did not have a negative effect on the proliferation, adhesion, or spread of mammalian cells, indicating low cytotoxicity. Lys-Au NCs/RB is a novel photosensitizer with low cytotoxicity that is capable of bacterial inactivation and the suppression of biofilm formation, and could help to improve dental treatments in the future
Recommended from our members
DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase 1 (DNMT1) during multistage carcinogenesis of the pancreas
To evaluate the significance of alterations in DNA methylation during multistage carcinogenesis of the pancreas, tissue samples of 13 peripheral pancreatic duct epithelia showing no remarkable histological changes without inflammatory background (DE), 20 peripheral pancreatic duct epithelia showing no remarkable histological changes with inflammatory background (DEI), 40 pancreatic intraepithelial neoplasias (PanIN) and 147 areas of ductal carcinoma were microdissected from surgically resected specimens from 58 patients and were embedded into agarose beads. The embedded tissue samples were subjected to methylation-specific PCR (MSP) to evaluate the DNA methylation status of the p14, p15, p16, p73, APC, hMLH1, MGMT, BRCA1, GSTP1, TIMP-3, CDH1 and DAPK-1 genes. The prevalence of DNA methylation of at least one of the 12 genes and the average number of methylated genes were significantly higher in both DEI (60% and 0.85 ± 0.88, P = 0.0151 and P = 0.0224, respectively) and PanIN (67.5% and 0.95 ± 0.85, P = 0.0014 and P = 0.0028, respectively) than in DE (15.4% and 0.15 ± 0.38), and were further increased in ductal carcinoma (98.3% and 2.50 ± 1.35, P < 0.0001 and P < 0.0001, respectively). The BRCA1, APC, p16 and TIMP-3 genes were frequently methylated in ductal carcinoma (60.3, 58.6, 39.3 and 30.9%, respectively). Considerable heterogeneity of DNA methylation status was observed among multiple microdissected areas from individual ductal carcinomas, and the number of methylated genes per area was significantly correlated with poorer tumor differentiation (P = 0.0249). The average number of methylated genes in ductal carcinomas was significantly correlated with DNMT1 protein expression level (P = 0.0093). These data suggest that accumulation of DNA methylation of multiple tumor-related genes is involved in multistage carcinogenesis of the pancreas from early precancerous stages to malignant progression and that DNMT1 protein overexpression may be responsible for this aberrant DNA methylation
Recommended from our members