4 research outputs found
Mind-muscle connection: effects of verbal instructions on muscle activity during bench press exercise
Different attentional foci may modify muscle activation during exercises. Our aim was to determine if it is possible to selectively activate the pectoralis major or triceps brachii muscles according to specific verbal instructions provided during the bench press exercise. 13 resistance-trained males (25.6\ub15.4 yrs, 182.7\ub19.1 cm, 86.4\ub19.7 kg) underwent an electromyographic signals acquisition of the sternocostal head, clavicular head of the pectoralis major, the anterior deltoid, and the long head of the triceps brachii (LT) during bench press exercise. Participants performed one non-instructed set (NIS) of 4 repetitions at 50% 1-repetition maximum (1-RM) and one NIS of 4 repetitions at 80% 1-RM. Four additional sets of 4 repetitions at 50% and 80% 1-RM were randomly performed with verbal instructions to isolate the chest muscles (chest instructed set, CIS) or to isolate the triceps muscles (triceps instructed set, TIS). Participants showed significantly higher LT activation during TIS compared to non-instructed set both at 50% (p=0.0199) and 80% 1-RM (p=0.0061) respectively. TIS elicited a significant (p=0.0250) higher activation of LT compared to CIS. Our results suggest that verbal instructions seem to be effective for increasing activity of the triceps brachii but not the pectoralis major during the bench press
Mind-muscle connection: effects of verbal instructions on muscle activity during bench press exercise
Different attentional foci may modify muscle activation during exercises. Our aim was to determine if it is possible to selectively activate the pectoralis major or triceps brachii muscles according to specific verbal instructions provided during the bench press exercise. 13 resistance-trained males (25.6±5.4 yrs, 182.7±9.1 cm, 86.4±9.7 kg) underwent an electromyographic signals acquisition of the sternocostal head, clavicular head of the pectoralis major, the anterior deltoid, and the long head of the triceps brachii (LT) during bench press exercise. Participants performed one non-instructed set (NIS) of 4 repetitions at 50% 1-repetition maximum (1-RM) and one NIS of 4 repetitions at 80% 1-RM. Four additional sets of 4 repetitions at 50% and 80% 1-RM were randomly performed with verbal instructions to isolate the chest muscles (chest instructed set, CIS) or to isolate the triceps muscles (triceps instructed set, TIS). Participants showed significantly higher LT activation during TIS compared to non-instructed set both at 50% (p=0.0199) and 80% 1-RM (p=0.0061) respectively. TIS elicited a significant (p=0.0250) higher activation of LT compared to CIS. Our results suggest that verbal instructions seem to be effective for increasing activity of the triceps brachii but not the pectoralis major during the bench press
iso-DGR Sequences Do Not Mediate Binding of Fibronectin N-terminal Modules to Adherent Fibronectin-null Fibroblasts*
Fibronectin (FN) without an RGD sequence (FN-RGE), and thus lacking the principal binding site for α5β1 integrin, is deposited into the extracellular matrix of mouse embryos. Spontaneous conversion of 263NGR and/or 501NGR to iso-DGR possibly explains this enigma, i.e. ligation of iso-DGR by αvβ3 integrin may allow cells to assemble FN. Partial modification of 263NGR to DGR or iso-DGR was detected in purified plasma FN by mass spectrometry. To test functions of the conversion, one or both NGR sequences were mutated to QGR in recombinant N-terminal 70-kDa construct of FN (70K), full-length FN, or FN-RGE. The mutations did not affect the binding of soluble 70K to already adherent fibroblasts or the ability of soluble 70K to compete with non-mutant FN or FN-RGE for binding to FN assembly sites. Non-mutant FN and FN-N263Q/N501Q with both NGRs mutated to QGRs were assembled equally well by adherent fibroblasts. FN-RGE and FN-RGE-N263Q/N501Q were also assembled equally well. Although substrate-bound 70K mediated cell adhesion in the presence of 1 mm Mn2+ by a mechanism that was inhibited by cyclic RGD peptide, the peptide did not inhibit 70K binding to cell surface. Mutations of the NGR sequences had no effect on Mn2+-enhanced cell adhesion to adsorbed 70K but caused a decrease in cell adhesion to reduced and alkylated 70K. These results demonstrate that iso-DGR sequences spontaneously converted from NGR are cryptic and do not mediate the interaction of the 70K region of FN with the cell surface during FN assembly