92 research outputs found

    Antifungal Activity and DNA Topoisomerase Inhibition of Hydrolysable Tannins from Punica granatum L

    Get PDF
    Punica granatum L. (pomegranate) fruit is known to be an important source of bioactive phenolic compounds belonging to hydrolysable tannins. Pomegranate extracts have shown antifungal activity, but the compounds responsible for this activity and their mechanism/s of action have not been completely elucidated up to now. The aim of the present study was the investigation of the inhibition ability of a selection of pomegranate phenolic compounds (i.e., punicalagin, punicalin, ellagic acid, gallic acid) on both plant and human fungal pathogens. In addition, the biological target of punicalagin was identified here for the first time. The antifungal activity of pomegranate phenolics was evaluated by means of Agar Disk Diffusion Assay and minimum inhibitory concentration (MIC) evaluation. A chemoinformatic analysis predicted for the first time topoisomerases I and II as potential biological targets of punicalagin, and this prediction was confirmed by in vitro inhibition assays. Concerning phytopathogens, all the tested compounds were effective, often similarly to the fungicide imazalil at the label dose. Particularly, punicalagin showed the lowest MIC for Alternaria alternata and Botrytis cinerea, whereas punicalin was the most active compound in terms of growth control extent. As for human pathogens, punicalagin was the most active compound among the tested ones against Candida albicans reference strains, as well as against the clinically isolates. UHPLC coupled with HRMS indicated that C. albicans, similarly to the phytopathogen Coniella granati, is able to hydrolyze both punicalagin and punicalin as a response to the fungal attack. Punicalagin showed a strong inhibitory activity, with IC50 values of 9.0 and 4.6 µM against C. albicans topoisomerases I and II, respectively. Altogether, the results provide evidence that punicalagin is a valuable candidate to be further exploited as an antifungal agent in particular against human fungal infections

    Antifungal Activity and DNA Topoisomerase Inhibition of Hydrolysable Tannins from Punica granatum L

    Get PDF
    Punica granatum L. (pomegranate) fruit is known to be an important source of bioactive phenolic compounds belonging to hydrolysable tannins. Pomegranate extracts have shown antifungal activity, but the compounds responsible for this activity and their mechanism/s of action have not been completely elucidated up to now. The aim of the present study was the investigation of the inhibition ability of a selection of pomegranate phenolic compounds (i.e., punicalagin, punicalin, ellagic acid, gallic acid) on both plant and human fungal pathogens. In addition, the biological target of punicalagin was identified here for the first time. The antifungal activity of pomegranate phenolics was evaluated by means of Agar Disk Diffusion Assay and minimum inhibitory concentration (MIC) evaluation. A chemoinformatic analysis predicted for the first time topoisomerases I and II as potential biological targets of punicalagin, and this prediction was confirmed by in vitro inhibition assays. Concerning phytopathogens, all the tested compounds were effective, often similarly to the fungicide imazalil at the label dose. Particularly, punicalagin showed the lowest MIC for Alternaria alternata and Botrytis cinerea, whereas punicalin was the most active compound in terms of growth control extent. As for human pathogens, punicalagin was the most active compound among the tested ones against Candida albicans reference strains, as well as against the clinically isolates. UHPLC coupled with HRMS indicated that C. albicans, similarly to the phytopathogen Coniella granati, is able to hydrolyze both punicalagin and punicalin as a response to the fungal attack. Punicalagin showed a strong inhibitory activity, with IC50 values of 9.0 and 4.6 µM against C. albicans topoisomerases I and II, respectively. Altogether, the results provide evidence that punicalagin is a valuable candidate to be further exploited as an antifungal agent in particular against human fungal infections

    SEARCH FOR SLOWLY MOVING MAGNETIC MONOPOLES WITH THE MACRO DETECTOR

    Get PDF
    A search for slowly moving magnetic monopoles in the cosmic radiation was conducted from October 1989 to November 1991 using the large liquid scintillator detector subsystem of the first supermodule of the MACRO detector at the Gran Sasso underground laboratory. The absence of candidates established an upper limit on the monopole flux of 5.6 x 10(-15) cm-2 sr-1 s-1 at 90% confidence level in the velocity range of 10(-4) less than or similar to beta < 4 x 10(-3). This result places a new constraint on the abundance of monopoles trapped in our solar system

    Search for slowly moving magnetic monopoles with the MACRO detector

    Full text link

    Measurement of vector boson production cross sections and their ratios using pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    Abstract available from publisher's website

    Sviluppo di un sistema di acquisizione dati a microprocessore

    No full text

    Development of quantitative PCR detection methods for phytopathogenic fungi and oomycetes

    No full text
    In recent years quantitative PCR (qPCR) detection methods have been widely utilised to detect phytopathogenic fungi and oomycetes and have greatly contributed to the advancement of knowledge in plant pathology. However, major drawbacks and common errors, most typical of earlier reports, still affect many methods currently available in the literature. Errors can be made throughout the entire process for the development of qPCR methods, at the level of selection of appropriate DNA extraction and purification protocols, identification of suitable target regions, choice of the chemistry, design and validation of specific primers and probes, analysis of sensitivity, choice of an absolute and/or relative quantification approach and analysis of the risk of detecting target DNA from dead sources. In the present review the above mentioned steps are analysed, highlighting their critical aspects and providing a practical guide for the users

    Postharvest fungal diseases of cactus pear fruit in southern Italy

    No full text
    Penicillium polonicum, Alternaria alternata, and Macrophomina phaseolina were identified as causal agents of three different postharvest diseases of cactus pear fruit in southern Italy. P. polonicum was responsible for blue mould and was identified by sequencing part of the β-tubulin gene DNA region. A. Alternata and M. phaseolina were the causal agents of a dry rot on fruit stored at 5°C and a basal soft rot on fruit stored at 20°C, respectively. The last two fungal species were identified by sequencing the GAPDH and TEF1-alpha gene regions
    corecore