120 research outputs found

    Antifungal Activity and DNA Topoisomerase Inhibition of Hydrolysable Tannins from Punica granatum L

    Get PDF
    Punica granatum L. (pomegranate) fruit is known to be an important source of bioactive phenolic compounds belonging to hydrolysable tannins. Pomegranate extracts have shown antifungal activity, but the compounds responsible for this activity and their mechanism/s of action have not been completely elucidated up to now. The aim of the present study was the investigation of the inhibition ability of a selection of pomegranate phenolic compounds (i.e., punicalagin, punicalin, ellagic acid, gallic acid) on both plant and human fungal pathogens. In addition, the biological target of punicalagin was identified here for the first time. The antifungal activity of pomegranate phenolics was evaluated by means of Agar Disk Diffusion Assay and minimum inhibitory concentration (MIC) evaluation. A chemoinformatic analysis predicted for the first time topoisomerases I and II as potential biological targets of punicalagin, and this prediction was confirmed by in vitro inhibition assays. Concerning phytopathogens, all the tested compounds were effective, often similarly to the fungicide imazalil at the label dose. Particularly, punicalagin showed the lowest MIC for Alternaria alternata and Botrytis cinerea, whereas punicalin was the most active compound in terms of growth control extent. As for human pathogens, punicalagin was the most active compound among the tested ones against Candida albicans reference strains, as well as against the clinically isolates. UHPLC coupled with HRMS indicated that C. albicans, similarly to the phytopathogen Coniella granati, is able to hydrolyze both punicalagin and punicalin as a response to the fungal attack. Punicalagin showed a strong inhibitory activity, with IC50 values of 9.0 and 4.6 µM against C. albicans topoisomerases I and II, respectively. Altogether, the results provide evidence that punicalagin is a valuable candidate to be further exploited as an antifungal agent in particular against human fungal infections

    Antifungal Activity and DNA Topoisomerase Inhibition of Hydrolysable Tannins from Punica granatum L

    Get PDF
    Punica granatum L. (pomegranate) fruit is known to be an important source of bioactive phenolic compounds belonging to hydrolysable tannins. Pomegranate extracts have shown antifungal activity, but the compounds responsible for this activity and their mechanism/s of action have not been completely elucidated up to now. The aim of the present study was the investigation of the inhibition ability of a selection of pomegranate phenolic compounds (i.e., punicalagin, punicalin, ellagic acid, gallic acid) on both plant and human fungal pathogens. In addition, the biological target of punicalagin was identified here for the first time. The antifungal activity of pomegranate phenolics was evaluated by means of Agar Disk Diffusion Assay and minimum inhibitory concentration (MIC) evaluation. A chemoinformatic analysis predicted for the first time topoisomerases I and II as potential biological targets of punicalagin, and this prediction was confirmed by in vitro inhibition assays. Concerning phytopathogens, all the tested compounds were effective, often similarly to the fungicide imazalil at the label dose. Particularly, punicalagin showed the lowest MIC for Alternaria alternata and Botrytis cinerea, whereas punicalin was the most active compound in terms of growth control extent. As for human pathogens, punicalagin was the most active compound among the tested ones against Candida albicans reference strains, as well as against the clinically isolates. UHPLC coupled with HRMS indicated that C. albicans, similarly to the phytopathogen Coniella granati, is able to hydrolyze both punicalagin and punicalin as a response to the fungal attack. Punicalagin showed a strong inhibitory activity, with IC50 values of 9.0 and 4.6 µM against C. albicans topoisomerases I and II, respectively. Altogether, the results provide evidence that punicalagin is a valuable candidate to be further exploited as an antifungal agent in particular against human fungal infections

    SEARCH FOR SLOWLY MOVING MAGNETIC MONOPOLES WITH THE MACRO DETECTOR

    Get PDF
    A search for slowly moving magnetic monopoles in the cosmic radiation was conducted from October 1989 to November 1991 using the large liquid scintillator detector subsystem of the first supermodule of the MACRO detector at the Gran Sasso underground laboratory. The absence of candidates established an upper limit on the monopole flux of 5.6 x 10(-15) cm-2 sr-1 s-1 at 90% confidence level in the velocity range of 10(-4) less than or similar to beta < 4 x 10(-3). This result places a new constraint on the abundance of monopoles trapped in our solar system

    Search for slowly moving magnetic monopoles with the MACRO detector

    Full text link

    Measurements of electroweak W±Z boson pair production in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Measurements of integrated and differential cross-sections for electroweak W±Z production in association with two jets (W±Zjj) in proton-proton collisions are presented. The data collected by the ATLAS detector at the Large Hadron Collider from 2015 to 2018 at a centre-of-mass energy of √ s = 13 TeV are used, corresponding to an integrated luminosity of 140 fb−1 . The W±Zjj candidate events are reconstructed using leptonic decay modes of the gauge bosons. Events containing three identified leptons, either electrons or muons, and two jets are selected. Processes involving pure electroweak W±Zjj production at Born level are separated from W±Zjj production involving a strong coupling. The measured integrated fiducial cross-section of electroweak W±Zjj production per lepton flavour is σW Zjj−EW→ℓ ′ νℓℓjj = 0.368 ± 0.037 (stat.) ± 0.059 (syst.) ± 0.003 (lumi.) fb, where ℓ and ℓ ′ are either an electron or a muon. Respective cross-sections of electroweak and strong W±Zjj production are measured separately for events with exactly two jets or with more than two jets, and in three bins of the invariant mass of the two jets. The inclusive W±Zjj production cross-section, without separating electroweak and strong production, is also measured to be σW Zjj→ℓ ′ νℓℓjj = 1.462 ± 0.063 (stat.) ± 0.118 (syst.) ± 0.012 (lumi.) fb, per lepton flavour. The inclusive W±Zjj production cross-section is measured differentially for several kinematic observables. Finally, the measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators

    Searches for exclusive Higgs boson decays into D⁎γ and Z boson decays into D0γ and Ks0γ in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for exclusive decays of the Higgs boson into D⁎γ and of the Z boson into D0γ and Ks0γ can probe flavour-violating Higgs boson and Z boson couplings to light quarks. Searches for these decays are performed with a pp collision data sample corresponding to an integrated luminosity of 136.3 fb−1 collected at s=13TeV between 2016–2018 with the ATLAS detector at the CERN Large Hadron Collider. In the D⁎γ and D0γ channels, the observed (expected) 95% confidence-level upper limits on the respective branching fractions are B(H→D⁎γ)&lt;1.0(1.2)×10−3, B(Z→D0γ)&lt;4.0(3.4)×10−6, while the corresponding results in the Ks0γ channel are B(Z→Ks0γ)&lt;3.1(3.0)×10−6

    Measurement of vector boson production cross sections and their ratios using pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    Abstract available from publisher's website

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    Get PDF
    Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with theFluka Monte Carlo programme
    corecore