3,690 research outputs found

    Glass transition in Ultrathin Polymer Films : A Thermal Expansion Study

    Get PDF
    Glass transition process gets affected in ultrathin films having thickness comparable to the size of the molecules. We observe systematic broadening of glass transition temperature (Tg) as the thickness of the polymer film reduces below the radius of gyration but the change in the average Tg was found to be very small. Existence of reversible negative and positive thermal expansion below and above Tg increased the sensitivity of our thickness measurements performed using energy dispersive x-ray reflectivity. A simple model of Tg variation as a function of depth expected from sliding motion could explain the results. We observe clear glass transition even for 4 nm polystyrene film that was predicted to be absent from ellipsometry measurements of thicker films.Comment: 11 pages, 5 figure

    Charge-induced spin polarization in non-magnetic organic molecule Alq3_{3}

    Full text link
    Electrical injection in organic semiconductors is a key prerequisite for the realization of organic spintronics. Using density-functional theory calculations we report the effect of electron transfer into the organic molecule Alq3_3. Our first-principles simulations show that electron injection spontaneously spin-polarizes non-magnetic Alq3_3 with a magnetic moment linearly increasing with induced charge. An asymmetry of the Al--N bond lengths leads to an asymmetric distribution of injected charge over the molecule. The spin-polarization arises from a filling of dominantly the nitrogen pzp_z orbitals in the molecule's LUMO together with ferromagnetic coupling of the spins on the quinoline rings.Comment: Accepted 4 pages 4 figure

    Energy dependent wavelength of the ion induced nanoscale ripple

    Get PDF
    Wavelength variation of ion beam induced nanoscale ripple structure has received much attention recently due to its possible application in nanotechnology. We present here results of Ar+^+ bombarded Si in the energy range 50 to 140 keV to demonstrate that with beam scanning the ripple wavelength increases with ion energy and decreases with energy for irradiation without ion beam scanning. An expression for the energy dependence of ripple wavelength is proposed taking into simultaneous effect of thermally activated surface diffusion and ion induced effective surface diffusion.Comment: REVTeX (4 pages), 3 EPS figure

    Sustaining supercooled mixed phase via resonant oscillations of the order parameter

    Full text link
    We investigate the dynamics of a first order transition when the order parameter field undergoes resonant oscillations, driven by a periodically varying parameter of the free energy. This parameter could be a background oscillating field as in models of pre-heating after inflation. In the context of condensed matter systems, it could be temperature TT, or pressure, external electric/magnetic field etc. We show that with suitable driving frequency and amplitude, the system remains in a type of mixed phase, without ever completing transition to the stable phase, even when the oscillating parameter of the free energy remains below the corresponding critical value (for example, with oscillating temperature, TT always remains below the critical temperature TcT_c). This phenomenon may have important implications. In cosmology, it will imply prolonged mixed phase in a first order transition due to coupling with background oscillating fields. In condensed matter systems, it will imply that using oscillating temperature (or, more appropriately, pressure waves) one may be able to sustain liquids in a mixed phase indefinitely at low temperatures, without making transition to the frozen phase.Comment: 17 pages, 7 figures, Expanded version with more detail

    Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars

    Full text link
    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequently be recycled to form MSPs and, if so, how they can observationally be distinguished from pulsars formed via the standard core-collapse SN channel in terms of their masses, spins, orbital periods and space velocities. Numerical calculations with a detailed stellar evolution code were used for the first time to study the combined pre- and post-AIC evolution of close binaries. We investigated the mass transfer onto a massive WD in 240 systems with three different types of non-degenerate donor stars: main-sequence stars, red giants, and helium stars. When the WD is able to accrete sufficient mass (depending on the mass-transfer rate and the duration of the accretion phase) we assumed it collapses to form a NS and we studied the dynamical effects of this implosion on the binary orbit. Subsequently, we followed the mass-transfer epoch which resumes once the donor star refills its Roche lobe and calculated the continued LMXB evolution until the end. We demonstrate that the final properties of these MSPs are, in general, remarkably similar to those of MSPs formed via the standard core-collapse SN channel. However, the resultant MSPs created via the AIC channel preferentially form in certain orbital period intervals. Finally, we discuss the link between AIC and young NSs in globular clusters. Our calculations are also applicable to progenitor binaries of SNe Ia under certain conditions. [Abridged]Comment: 26 pages, 20 figures, 2 tables. A few references added. A&A in pres

    Two-dimensional Induced Ferromagnetism

    Full text link
    Magnetic properties of materials confined to nanometer length scales are providing important information regarding low dimensional physics. Using gadolinium based Langmuir-Blodgett films, we demonstrate that two-dimensional ferromagnetic order can be induced by applying magnetic field along the in-plane (perpendicular to growth) direction. Field dependent exchange coupling is evident in the in-plane magnetization data that exhibit absence of hysteresis loop and show reduction in field required to obtain saturation in measured moment with decreasing temperature.Comment: 4 pages, 3 postscript figures, corrected paper forma

    Formation of rectifier with gold nanoclusters

    Get PDF
    Gold nanoclusters encapsulated with organic molecules are of great interest for its possible applications in the fields of molecular electronics, catalysis and medical science. Here we demonstrate that monolayer and bilayer films of thiol-capped gold nanoclusters can exhibit diode-like properties provided controlled spatial asymmetry exist between two tunnel junctions used to connect a thiol capped gold nanoclusters. Current-voltage characteristics of this rectifier were obtained from conducting probe atomic force microscopy measurements and also from conventional two probe resistance measurements. Systematic x-ray reflectivity and atomic force microscopy measurements were carried out to characterize the spatial asymmetry introduced by a monolayer of fatty acid salt gadolinium stearate used to deposit thiol-capped gold nanocluster molecules on hydrophilic SiO2-Si(001) substrate by Langmuir Blodgett technique. This information was used to explain prominent rectification observed in these nano-structured films.Comment: 13 pages, 3 figure

    Construction and Analysis of Projected Deformed Products

    Full text link
    We introduce a deformed product construction for simple polytopes in terms of lower-triangular block matrix representations. We further show how Gale duality can be employed for the construction and for the analysis of deformed products such that specified faces (e.g. all the k-faces) are ``strictly preserved'' under projection. Thus, starting from an arbitrary neighborly simplicial (d-2)-polytope Q on n-1 vertices we construct a deformed n-cube, whose projection to the last dcoordinates yields a neighborly cubical d-polytope. As an extension of thecubical case, we construct matrix representations of deformed products of(even) polygons (DPPs), which have a projection to d-space that retains the complete (\lfloor \tfrac{d}{2} \rfloor - 1)-skeleton. In both cases the combinatorial structure of the images under projection is completely determined by the neighborly polytope Q: Our analysis provides explicit combinatorial descriptions. This yields a multitude of combinatorially different neighborly cubical polytopes and DPPs. As a special case, we obtain simplified descriptions of the neighborly cubical polytopes of Joswig & Ziegler (2000) as well as of the ``projected deformed products of polygons'' that were announced by Ziegler (2004), a family of 4-polytopes whose ``fatness'' gets arbitrarily close to 9.Comment: 20 pages, 5 figure
    corecore